MIT Department of Mechanical Engineering
 2.25 Advanced Fluid Mechanics

Problem 2.02
This problem is from "Advanced Fluid Mechanics Problems" by A.H. Shapiro and A.A. Sonin

A liquid of density ρ and surface tension σ has been spilled on a horizontal plate so that it forms a very large puddle whose depth (in the central parts) is h. Consider the region near the edge of the puddle, which can be viewed to good approximation as two-dimensional. If the contact angle is α, derive an expression for the shape of the liquid surface $y_{s}(x)$.

Assume for simplicity that α is small, so that the radius of curvature of the surface is large compared with h and can be approximated by

$$
R=\frac{1}{\left|\frac{d^{2} y_{s}}{d x^{2}}\right|}
$$

ans:

$$
\begin{aligned}
y_{s} & =h[1-\exp (-\sqrt{\rho g / \sigma} x)] \\
h & =\tan \alpha \sqrt{\sigma / \rho g}
\end{aligned}
$$

Solution:

Given: $\quad \sigma, \alpha, \rho$
Radius of curvature, $R_{1} \approx \frac{1}{\frac{d^{2} y_{s}}{d x^{2}}}$ since α is small.
Unknown: y_{s}, h

Find $P_{o}-P_{i}$:
$P_{o}-P_{i}=-\sigma\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)$ since $R_{2}=R_{\text {puddle }}$, which is assumed to be very large

$P_{i}=P a$ at $y_{s}=h$ since the surface is FLAT (no curvature) \Rightarrow no surface tension!

$$
P_{j}=P_{a}+\rho g(h-y)
$$

For this side of the puddle

$$
\frac{d^{2} y_{s}}{d x^{2}}<0 \quad \Rightarrow \quad R_{1}=-\frac{1}{\frac{d^{2} y_{s}}{d x^{2}}} \quad \Rightarrow \quad P_{o}-P_{i}=\sigma \frac{d^{2} y_{s}}{d x^{2}}
$$

For $y=y_{s}(x): P_{i}=P_{j}=P_{o}+\rho g\left(h-y_{s}\right) \quad \Rightarrow \quad-\rho g\left(h-y_{s}\right)=\sigma \frac{d^{2} y}{d x^{2}}$

$$
\frac{d^{2} y_{s}}{d x^{2}}-\frac{\rho g}{\sigma} y_{s}=-\frac{\rho g}{\sigma} h \quad \text { 2nd order ODE w/ B.C. } \begin{cases}y_{s}=0 & \text { at } x=0 \tag{2.02a}\\ y_{s}=h & \text { as } x \rightarrow \infty\end{cases}
$$

Solve Eq. (2.02a) by assuming the form of the solution to be: $y_{s}=A e^{B x}+C$

$$
\begin{gathered}
\Rightarrow \quad \frac{d^{2} y_{s}}{d x^{2}}=A B^{2} e^{B x} \quad \rightarrow \quad A B^{2} e^{B x}-\frac{\rho g}{\sigma} A e^{B x}-\frac{\rho g}{\sigma} C=-\frac{\rho g}{\sigma} h \\
\therefore C=h \\
\therefore B= \pm \sqrt{\frac{\rho g}{\sigma}} \rightarrow B=-\sqrt{\frac{\rho g}{\sigma}} \quad\left(\text { so that } y_{s}=h \text { at } x \rightarrow \infty\right) \\
\Rightarrow y_{s}=A \exp \left(-\sqrt{\frac{\rho g}{\sigma}} x\right)+h
\end{gathered}
$$

Solve for A by invoking the first boundary condition:

$$
\begin{align*}
& y_{s}=0=A+h \quad \Rightarrow \quad A=-h \\
& \Rightarrow y_{s}=h\left[1-\exp \left(-\sqrt{\frac{\rho g}{\sigma}} x\right)\right] \tag{2.02b}
\end{align*}
$$

$\underline{\text { Find } h}$ by letting $\frac{d y_{s}}{d x}=\tan \alpha$ at $x=0$:

$$
\begin{gathered}
\frac{d y_{s}}{d x}=\left.h \sqrt{\frac{\rho g}{\sigma}} \exp \left(-\sqrt{\frac{\rho g}{\sigma}} x\right) \Rightarrow \frac{d y_{s}}{d x}\right|_{x=0}=h \sqrt{\frac{\rho g}{\sigma}}=\tan \alpha \\
\Rightarrow h=\sqrt{\frac{\sigma}{\rho g}} \tan \alpha
\end{gathered}
$$

Alternatively, starting from Young-Laplace, (assuming that α is small) such that curvature is equal to $\frac{1}{\frac{d^{2} y_{s}}{d x^{2}}}$ $\Rightarrow \Delta P=-\sigma \frac{d^{2} y_{s}}{d x^{2}}, \Rightarrow$

$$
\begin{equation*}
P_{i}\left(x, y_{s}(x)\right)-P_{o}=-\sigma \frac{d^{2} y_{s}}{d x^{2}} \tag{2.02c}
\end{equation*}
$$

besides, $P_{i}(x, y)=P_{i}\left(x, y_{s}\right)+\rho g\left(y_{s}-y\right)$, from hydrostatics. Then, combining the information from hydrostatics and Young Laplace,

$$
\begin{equation*}
\Rightarrow P_{i}(x, y)=-\sigma \frac{d^{2} y_{s}}{d x^{2}}+P_{o}+\rho g\left(y_{s}-y\right) \tag{2.02~d}
\end{equation*}
$$

Now, since it's hard to work with so many functions, let's use one more property from hydrostatics, $\frac{d P}{d x}=0$, at any y. Then, differentiating all the expression,

$$
\begin{equation*}
0=-\sigma \frac{d^{3} y_{s}}{d x^{3}}+\rho g \frac{d y_{s}}{d x} \tag{2.02e}
\end{equation*}
$$

and setting $L_{c}=\sqrt{\frac{\sigma}{\rho g}}, \Rightarrow$ for $0<x<\infty$ (large puddle),

$$
\begin{equation*}
0=L_{c}^{2} \frac{d^{3} y_{s}}{d x^{3}}-\frac{d y_{s}}{d x}, \tag{2.02f}
\end{equation*}
$$

which is a 3rd order differential equation with the boundary conditions

$$
\begin{align*}
& y_{s}(0)=0 \tag{2.02~g}\\
& \frac{d y_{s}(0)}{d x}=\tan \alpha \tag{2.02h}\\
& \frac{d y_{s}}{d x} \rightarrow 0 \quad \text { as } \quad x \rightarrow \infty \tag{2.02i}
\end{align*}
$$

Solving, we first introduce $G=\frac{d y_{s}}{d x}$, so

$$
\begin{equation*}
L_{c} \frac{d^{2} G}{d x^{2}}-G=0, \quad \Rightarrow \quad G=C_{1} e^{-\frac{x}{L_{c}}}+\underbrace{C_{2} e^{\frac{x}{L_{c}}}}_{C_{2}=0, \text { unbounded term }} \tag{2.02j}
\end{equation*}
$$

then,

$$
\begin{equation*}
y_{s}=C_{1}^{\prime} e^{-\frac{x}{L_{c}}}+C_{3} \tag{2.02k}
\end{equation*}
$$

From the boundary condition $y_{s}(0)=0, \Rightarrow C_{1}^{\prime}=C_{3}, \Rightarrow y_{s}=C_{3}\left(1-e^{\frac{-x}{L_{c}}}\right)$.
From the boundary condition $\frac{d y_{s}(0)}{d x}=\tan \alpha, \Rightarrow \frac{C_{3}}{L_{c}}=\tan \alpha, \Rightarrow y_{s}=L_{c} \tan \alpha\left(1-e^{\frac{-x}{L_{c}}}\right)$.
Finally,

$$
\begin{equation*}
y_{s}(x)=L_{c} \tan \alpha\left(1-e^{\frac{-x}{L_{c}}}\right) \tag{2.02l}
\end{equation*}
$$

from which we notice that L_{c} measures the extent of the effect of interface tension on the surface profile.

Note that we can deduce h (for all x) by a force balance as done in class:

$$
\begin{equation*}
\frac{\rho g h^{2}}{2}+\sigma \cos \alpha=\sigma, \quad \Rightarrow \quad h^{2}=\frac{2 \sigma(1-\cos \alpha)}{\rho g} \tag{2.02m}
\end{equation*}
$$

then, as $\alpha \rightarrow 0$

$$
\begin{equation*}
\frac{2 \sigma(1-\cos \alpha)}{\rho g} \approx 2 \sigma\left(1-\left(1-\alpha^{2}+\ldots\right)\right) \frac{1}{\rho g}=\frac{\sigma \alpha^{2}}{\rho g} \tag{2.02n}
\end{equation*}
$$

MIT OpenCourseWare
http://ocw.mit.edu

2.25 Advanced Fluid Mechanics

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

