MIT Department of Mechanical Engineering 2.25 Advanced Fluid Mechanics

Problem 2.07
This problem is from "Advanced Fluid Mechanics Problems" by A.H. Shapiro and A.A. Sonin

A drop of liquid of volume V is squeezed between two parallel smooth plates until the liquid thickness h is very small compared with the liquid's radial extent R. The liquid/plate/air contact angle α, and the liquid/air surface tension is σ. Gravitational effects are negligible.
(a) Derive an expression for the downward force F required to hold the plates in position. Express F in terms V, α, σ, and R.
(b) If $\alpha=\pi$ radians (a perfectly nonwetting situation) and $T=0.07 \mathrm{~N} / \mathrm{m}$, say (representing a clean airwater interface), what downward force is required to press a $3 \mathrm{~mm}^{3}$ drop of liquid into a thin disc or radius $R=2 \mathrm{~cm}$?

MIT OpenCourseWare
http://ocw.mit.edu

2.25 Advanced Fluid Mechanics

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

