MIT Department of Mechanical Engineering 2.25 Advanced Fluid Mechanics

Problem 2.07

This problem is from "Advanced Fluid Mechanics Problems" by A.H. Shapiro and A.A. Sonin

A drop of liquid of volume V is squeezed between two parallel smooth plates until the liquid thickness h is very small compared with the liquid's radial extent R. The liquid/plate/air contact angle α , and the liquid/air surface tension is σ . Gravitational effects are negligible.

- (a) Derive an expression for the downward force F required to hold the plates in position. Express F in terms V, α , σ , and R.
- (b) If $\alpha = \pi$ radians (a perfectly nonwetting situation) and $T = 0.07 \,\text{N/m}$, say (representing a clean airwater interface), what downward force is required to press a $3 \,\text{mm}^3$ drop of liquid into a thin disc or radius $R = 2 \,\text{cm}$?

2.25 Advanced Fluid Mechanics Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.