MIT Department of Mechanical Engineering

 2.25 Advanced Fluid Mechanics
Problem 2.5

This problem is from "Advanced Fluid Mechanics Problems" by A.H. Shapiro and A.A. Sonin

A container is being filled with liquid of density ρ. A small, sharp-edged hole of radius R penetrates the container's bottom. The surface tension between the liquid and the ambient air is σ, and the contact angle for the air/liquid/container combination is α (measured from the wall through the liquid to the interface).
(a) Find the critical liquid depth h_{c} at which liquid first begins to flow through the hole in the bottom. Assume that $R \ll h$. (Hint Is the expression different depending on whether α is greater or smaller than $\pi / 2$?)
(b) Evaluate h_{c} for the case when the liquid is water at $20^{\circ} C, R=0.1 \mathrm{~mm}, \sigma=0.07 \mathrm{~N} / \mathrm{m}$, and $\alpha=120^{\circ}$.

MIT OpenCourseWare
http://ocw.mit.edu

2.25 Advanced Fluid Mechanics

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

