MIT Department of Mechanical Engineering 2.25 Advanced Fluid Mechanics

Problem 2.02
This problem is from "Advanced Fluid Mechanics Problems" by A.H. Shapiro and A.A. Sonin

A liquid of density ρ and surface tension σ has been spilled on a horizontal plate so that it forms a very large puddle whose depth (in the central parts) is h. Consider the region near the edge of the puddle, which can be viewed to good approximation as two-dimensional. If the contact angle is α, derive an expression for the shape of the liquid surface $y_{s}(x)$.

Assume for simplicity that α is small, so that the radius of curvature of the surface is large compared with h and can be approximated by

$$
R=\frac{1}{\left|\frac{d^{2} y_{s}}{d x^{2}}\right|}
$$

ans:

$$
\begin{aligned}
y_{s} & =h[1-\exp (-\sqrt{\rho g / \sigma} x)] \\
h & =\tan \alpha \sqrt{\sigma / \rho g}
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

2.25 Advanced Fluid Mechanics

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

