
MIT Department of Mechanical Engineering 

2.25 Advanced Fluid Mechanics 

Magnus Effect 

Consider the flow past a spinning cylinder. In a real fluid, the angular motion would act to impart a net 
circulation to the flow through the action of the fluid viscosity. This circulation (denoted by the constant Γ) 
may be incorporated artificially into an irrotational flow model by adding an irrotational vortex potential 
Φ = − θΓ to the velocity potential deduced for potential flow over a cylinder. So the total potential will be 2π 
of this form:  

a2  θΓ 
Φ = U r + cosθ − 

r 2π 

• (a) Calculate an expression for the resulting velocity field. 

• (b) By examining the location of stagnation points in the flow, deduce the dependence of the form of 
Γthe flow on the dimensionless spin number S = , and make rough sketches of the flow for S < 1,(4πaU) 

S = 1 and S > 1. 

• (c) Demonstrate that the drag on the cylinder still vanishes regardless of the spin number. 

• (d) Deduce an expression for the transverse force (or “lift”) on the cylinder. 

Note: the generation of lift through the interaction of circulation and translation is the root of many 
interesting phenomena in the dynamics of sports (generically known as the Magnus Effect). 
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Potential Flow Magnus Effect 

Solution: 
(a) For a cylinder in uniform flow we have: 

Figure 1: Cylinder in uniform flow with velocity U 

2a
w1(z) = U z + (1) 

z 

Now for ”simulating” the flow around a cylinder which is spinning in uniform flow, we add a clockwise line 
vortex of circulation −Γ : 

iΓ  z  
w2(z) = 

2π 
ln

a
(2) 

Figure 2: Cylinder in uniform flow with clockwise circulation 

Therefore: 

2   a iΓ z 
w(z) = w1 + w2 = U z + + ln (3) 

z 2π a

iθKnowing that z = re : 

  
2     2 2   a iΓ r a a iΓ r θΓiθ −iθ w(z) = U re + e + ln + iθ = U r + cos θ + i sin θ r − + ln − 
r 2π a r r 2π a 2π 

(4) 
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Potential Flow Magnus Effect 

Thus, writing w(z) as w(z) = Φ(z) + iΨ(z): 

2 2a θΓ a Γ r 
w(z) = Φ(z) + iΨ(z) = U r + cos θ − + i U sin θ r − + ln (5) 

r 2π r 2π a 
2a θΓ 

Φ(z) = U r + cos θ − (6) 
r 2π 

2a Γ r 
Ψ(z) = U sin θ r − + ln (7) 

r 2π a 

Then we can calculate the velocities in the r and θ directions: 

2∂Φ 1 ∂Ψ a
ur = = = U 1 − cos θ (8)

∂r r ∂θ r2

21 ∂Φ ∂Ψ a Γ 
uθ = = − = −U 1 + sin θ − (9) 

r ∂θ ∂r r2 2πr 

Checking the boundary conditions, at the boundaries of the cylinder (r = a) there should be no flux. 

2a→ ur(r = a) = U 1 − cos θ = 0 (10) 
a2

Since we are in potential flow, we should not care about no-slip as the potential flow does not satisfy the 
no-slip boundary condition. The other boundary condition is that at r → ∞ velocity goes back to U . 

uθ(r → ∞) = −U sin θ (11) 

ur(r → ∞) = U cos θ (12) 

|u(r → ∞)| = ur 
2(r → ∞) + uθ 

2(r → ∞) = U (13) 

(b) In order to find the stagnation point from equations (8) and (9): 

ur = 0 → r = a or cos(θ) = 0 (14) 

uθ = 0 and r = a : 

Γ Γ −U(2) sin θ − = 0 → sin θ = − (15)
2πa 4πaU 

(16) 

ΓSo, if < 1, then stagnation points are on the cylinder at angles: 4πaU 

θ1 = sin−1 − 
Γ 

(17)
4πaU 

θ2 = π − sin−1 − 
Γ 

(18)
4πaU 
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Potential Flow Magnus Effect 

ΓIf = 1, there there will be only one stagnation point on the cylinder at: 4πaU 

π 
θ = − (19)

2 

ΓAnd if < 1, then there is no stagnation point on the cylinder, but we can use that fact that at cos θ = 0 4πaU 
the radial velocity is zero (This cannot be on the cylinder, r  = a). Therefore:

π π 
cos θ = 0 → θ = − , θ = (20)

2 2 
2π a Γ 

θ = → uθ = −U 1 + − = 0 (Impossible for Γ > 1) (21)
2 r2 2πr 

2π a Γ 
θ = − → uθ = U 1 + − = 0 (22)

2 r2 2πr 
1 → r = Γ + Γ2 − (4πaU)2 (23)

4πU 

Equation (22) has 2 roots, but since one root lies inside the cylinder (r < a), it is discarded and only the root 
given in equation (23) is acceptable. A sketch for the flow profiles of the 3 cases mentioned is shown in figure 
3. 

Figure 3: Different regimes of flow past a circular cylinder with circulation. Adapted from Fluid Mechanics 
4th ed.,P. K. Kundu and I. M. Cohen, Academic Press, 2008 

(c) To find the drag and lift forces, we need to find the pressure first; for any point on the cylinder we can 
use Bernoulli: 

2P∞ +
1 
ρU2 = P (r = a, θ) + ρuθ (24)

2 
2

→ P (r = a, θ) = P∞ +
1 
ρ U2 − −2U sin θ − 

Γ 
(25)

2 2πa 

Equation (25) is symmetric about the y-axis (θ = ), therefore there is no force component in the x
direction and therefore, there is no drag force on the cylinder. 

2π 2π 2

FD = − P (r = a, θ) cos θadθ = −a P∞ +
1 
ρ U2 − 2U sin θ + 

Γ 
cos θdθ = 0 (26)

2 2πa 0 0

(d)To find lift, again using the pressure from equation (25): 
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Potential Flow Magnus Effect 

Figure 4: Free body diagram of the cylinder 

dF = −P (r = a, θ)adθ (27) 

dL = dF sin θ (28) 

2π 2π 2 

L = − P (r = a, θ) sin θadθ = −a P∞ +
1 
ρ U2 − 2U sin θ + 

Γ 
sin θdθ 

2 2πa 0 0 

2π 2πΓU ΓU 1 − cos2θ 
L = aρ sin2 θdθ = ρ dθ = ρUΓ 

πa π 20 0 

L = ρUΓ

Equation (29) is true for irrotational flow around any 2D object and not only cylinders. This equations is 

known as the Kutta-Zhukhousky lift theorem. 

D

Problem Solution by Bavand(2012), updated by Shabnam, Fall 2013 
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