MIT Department of Mechanical Engineering 2.25 Advanced Fluid Mechanics

Kundu \& Cohen 6.8

This problem is from "Fluid Mechanics" by P. K. Kundu and I. M. Cohen
A solid hemisphere of radius a is lying on a flat plate. A uniform stream U is flowing over it. Assuming irrotational flow, show that the density of the material must be

$$
\rho_{h} \geq \rho\left(1+\frac{33}{64} \frac{U^{2}}{a g}\right)
$$

to keep it on the plate.

Solution:

Note that we are looking at the flow around a solid hemisphere not a semi-circle.

Due to high speed flow at the top of the sphere, we expect a low pressure at the top of the sphere. This pressure results in a lift force on the hemsiphere.

Given the velocity field, the pressure distribution at the surface of the sphere can be found using Bernoulli:

$$
p(\theta)-p_{a}=\frac{1}{2} \rho\left(U^{2}-v(r, \theta)^{2}\right)
$$

We can then integrate the pressure at the surface of the hemisphere to find the lift force. The flow around this hemisphere is the same as that for a sphere because of symmetry about the plate. Thus, streamlines for this flow can be solved by combining the streamlines for a uniform flow and a doublet.
from Kundu \& Cohen pp. 192

$$
\begin{gathered}
\psi_{\text {hemisphere }}=\psi_{\text {sphere }}=\psi_{\text {uniform }}+\psi_{\text {doublet }}=\frac{1}{2} U r^{2} \sin ^{2} \theta-\frac{m}{r} \sin ^{2} \theta \\
v_{r}=\frac{1}{r^{2} \sin \theta} \frac{\partial \psi}{\partial \theta} \\
v_{\theta}=-\frac{1}{r \sin \theta} \frac{\partial \psi}{\partial r}
\end{gathered}
$$

where m is the strength of the doublet. First, let us evaluate v_{r}

$$
\begin{align*}
v_{r} & =\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left[\left(\frac{1}{2} U r^{2}-\frac{m}{r}\right) \sin ^{2} \theta\right] \\
& =\frac{1}{r^{2} \sin \theta}\left(\frac{1}{2} U r^{2}-\frac{m}{r}\right) 2 \sin \theta \cos \theta=\left(U-2 \frac{m}{r^{3}}\right) \cos \theta \tag{1}
\end{align*}
$$

Similarly for v_{θ} :

$$
\begin{align*}
v_{\theta} & =-\frac{1}{r \sin \theta} \frac{\partial}{\partial r}\left[\left(\frac{1}{2} U r^{2}-\frac{m}{r}\right) \sin ^{2} \theta\right] \\
& =-\frac{1}{r \sin \theta}\left(U r+\frac{m}{r^{2}}\right) \sin ^{2} \theta=-\left(U+\frac{m}{r^{3}}\right) \sin \theta \tag{2}
\end{align*}
$$

Now we must solve for the doublet strength m. We know there is a stagnation point at $r=a$ and $\theta=\pi$ (and also for $\theta=0$) such that our velocities are zero:

$$
\begin{gathered}
\left.v_{r}\right|_{r=a, \theta=\pi}=0=\left(U-2 \frac{m}{a^{3}}\right) \\
\Rightarrow m=\frac{1}{2} U a^{3}
\end{gathered}
$$

Now substitute this into Eqs (1) and (2)

$$
\begin{align*}
& v_{r}=U\left[1-\left(\frac{a}{r}\right)^{3}\right] \cos \theta \tag{3}\\
& v_{\theta}=-U\left[1+\frac{1}{2}\left(\frac{a}{r}\right)^{3}\right] \sin \theta
\end{align*}
$$

At the surface of the hemisphere $r=a$, such that $v_{r}=0$ (no flux through the sphere). Thus

$$
\left.v(r, \theta)\right|_{r=a}=v_{\theta}(a, \theta)=-\frac{3}{2} U \sin \theta
$$

Since the pressure is only a function of θ, we can solve for the lift force by integrating the pressure over the area of the hemisphere projected on the $x-y$ plane, A_{p} :

$$
\begin{aligned}
F_{p}= & \int_{A_{p}} p-p_{a} d A_{p} \\
= & \int_{A_{p}} \frac{1}{2} \rho\left[U^{2}-\left(-\frac{3}{2} U \sin \theta\right)^{2}\right] d A_{p} \\
= & \frac{1}{2} \rho U^{2} \int_{0}^{\pi}\left(2 a^{2} \sin ^{2} \theta\right) d \theta \\
& -\frac{9}{8} \rho U^{2} \int_{0}^{\pi} \sin ^{2} \theta\left(2 a^{2} \sin ^{2} \theta\right) d \theta
\end{aligned}
$$

From table of integrals:
$\int \sin ^{2} x d x=\frac{1}{2}(x-\sin x \cos x)+C$
$\int \sin ^{4} x d x=-\frac{\sin ^{3} x \cos x}{4}+\frac{3}{8}(x-\sin x \cos x)+C$

Therefore,

$$
\begin{aligned}
F_{p}= & 2 \frac{1}{2} \rho U^{2} a^{2}\left[\frac{1}{2}(\theta-\sin \theta \cos \theta)\right]_{0}^{\pi}-\frac{9}{4} \rho a^{2} U^{2}\left[-\frac{\sin ^{3} \theta \cos \theta}{4}+\frac{3}{8}(\theta-\sin \theta \cos \theta)\right]_{0}^{\pi} \\
& =\frac{1}{2} \rho a^{2} \pi U^{2}-\frac{27}{32} \pi \rho a^{2} U^{2}=-\frac{11}{32} \pi \rho a^{2} U^{2}
\end{aligned}
$$

The sign of this force tells us the pressure has a lifting effect (a positive pressure on an upward facing surface pushes downward). Thus $F_{L}=-F_{p}=\frac{11}{32} \pi \rho a^{2} U^{2}$. The weight of the hemisphere is given by

$$
W=\rho_{h} g V=\rho_{h} g \frac{2}{3} \pi a^{3}
$$

which acts downward. There is also a buoyancy force given by

$$
F_{B}=\rho g V=\rho g \frac{2}{3} \pi a^{3}
$$

which acts upward. To keep the hemisphere on the plate we need the downward acting force W to be greater than or equal to the upward acting forces, $F_{p}+F_{B}$:

$$
\begin{gathered}
W \geq F_{p}+F_{B} \\
\rho_{h} g \frac{2}{3} \pi a^{3} \geq \rho g \frac{2}{3} \pi a^{3}+\frac{11}{32} \pi \rho a^{2} U^{2} \\
\rho_{h} \geq \rho\left(1+\frac{33}{64} \frac{U^{2}}{a g}\right)
\end{gathered}
$$

MIT OpenCourseWare
http://ocw.mit.edu

2.25 Advanced Fluid Mechanics

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

