# MIT Department of Mechanical Engineering 2.25 Advanced Fluid Mechanics 

## Kundu \& Cohen 6.4

This problem is from"Fluid Mechanics" by P. K. Kundu and I. M. Cohen
(a) Take a plane source of strength $m$ at point $(-a, 0)$, a plane sink of equal strength at $(a, 0)$, and superpose a uniform stream $U$ directed along the $x$-axis.
(b) Show that there are two stagnation points located on the $x$-axis at points

$$
\pm a\left(\frac{m}{\pi a U}+1\right)^{1 / 2}
$$

(c) Show that the streamline passing through the stagnation points is given by $\psi=0$. Verify that the line $\psi=0$ represents a closed oval-shaped body, whose maximum width $h$ is given by the solution of the equation

$$
h=a \cot \left(\frac{\pi U h}{m}\right) .
$$

The body generated by the superposition of a uniform stream and a source-sink pair is called a Rankine body. It becomes a circular cylinder as the source-sink pair approach each other.

## Solution:

(a)

$$
W(z)=W_{\text {uniform flow }}+W_{\text {source }}+W_{\text {sink }}
$$

where $W=\phi+i \psi, \phi$ is the potential function, and $\psi$ the stream function.

Recap from Lecture: $W$ satisfies the Laplace equation which is linear. Therefore, one can superimpose its solutions as above.

$$
\begin{aligned}
W_{\text {uniform flow }} & =U_{\infty}(x+i y) \\
W_{\text {source }}=\frac{m}{2 \pi} \ln \left(r e^{i \theta}\right) & =\left(\frac{m}{2 \pi} \ln r+i \frac{m \theta}{2 \pi}\right) \\
W_{\text {sink }}=-\frac{m}{2 \pi} \ln \left(r e^{i \theta}\right) & =-\left(\frac{m}{2 \pi} \ln r+i \frac{m \theta}{2 \pi}\right)
\end{aligned}
$$

Substitute expressions for $r$ and $\theta$ in terms of $x$ and $y$ (see figure):

$$
\begin{aligned}
& W_{\text {source }}=\frac{m}{2 \pi} \ln \left(r e^{i \theta}\right)=\left(\frac{m}{2 \pi} \ln r+i \frac{m \theta}{2 \pi}\right) \\
& W_{\text {sink }}=-\frac{m}{2 \pi} \ln \left(r e^{i \theta}\right)=-\left(\frac{m}{2 \pi} \ln r+i \frac{m \theta}{2 \pi}\right)
\end{aligned} \begin{aligned}
& r=\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}} \\
& \theta=\arctan \left(\frac{y-y_{0}}{x-x_{0}}\right) \\
& \Rightarrow W_{\text {total }}=\underbrace{U_{\infty} x+\frac{m}{4 \pi} \ln \frac{(x+a)^{2}+y^{2}}{(x-a)^{2}+y^{2}}}_{\phi}+i \underbrace{\left[U_{\infty} y+\frac{m}{2 \pi} \arctan \left(\frac{y}{x+a}\right)-\frac{m}{2 \pi} \arctan \left(\frac{y}{x-a}\right)\right]}_{\psi}
\end{aligned}
$$

(b) Obtain the velocity field $\left(v_{x}, v_{y}\right)$ by invoking $\mathbf{v}=\nabla \phi$

$$
\begin{aligned}
v_{x}=\frac{\partial \phi}{\partial x}=U_{\infty} & +\frac{m}{4 \pi} \cdot \frac{(x-a)^{2}+y^{2}}{(x+a)^{2}+y^{2}}\left\{\frac{2(x+a)}{(x-a)^{2}+y^{2}}-\frac{(x+a)^{2}+y^{2}}{\left[(x-a)^{2}+y^{2}\right]^{\downarrow}} \cdot 2(x-a)\right\} \\
& \Rightarrow v_{x}=U_{\infty}+\frac{m}{2 \pi}\left[\frac{x+a}{(x+a)^{2}+y^{2}}-\frac{x-a}{(x-a)^{2}+y^{2}}\right] \\
v_{y}=\frac{\partial \phi}{\partial y}= & \frac{m}{4 \pi} \cdot \frac{(x-a)^{2}+y^{2}}{(x+a)^{2}+y^{2}}\left\{\frac{2 y}{(x-a)^{2}+y^{2}}-\frac{(x+a)^{2}+y^{2}}{\left[(x-a)^{2}+y^{2}\right]^{\nmid}} \cdot 2 y\right\} \\
& \Rightarrow v_{y}=\frac{m y}{2 \pi}\left[\frac{1}{(x+a)^{2}+y^{2}}-\frac{1}{(x-a)^{2}+y^{2}}\right]
\end{aligned}
$$

Alternatively, one can find $\mathbf{v}$ by using: $v_{x}=\frac{\partial \psi}{\partial y}, v_{y}=-\frac{\partial \psi}{\partial x}$.

Find the stagnation point(s) by finding $(x, y)$ such that $v_{x}=v_{y}=0$.

$$
v_{y}=0 \text { at } y=0, \forall x
$$

Plug in $y=0$ into $v_{x}$ and find $x$ that lets $v_{x}=0$ :

$$
\begin{gathered}
v_{x}(x, y=0)=U_{\infty}+\frac{m}{2 \pi}\left(\frac{x+a}{(x+a)^{2}}-\frac{x-a}{(x-a)^{2}}\right)=0 \\
U_{\infty}+\frac{m}{2 \pi}\left(\frac{1}{x+a}-\frac{1}{x-a}\right)=0
\end{gathered}
$$

OR (after some algebra...) : $\quad x^{2}-a^{2}-\frac{m a}{\pi U_{\infty}}=0$
Using the quadratic formula ${ }^{1}$,

$$
x= \pm a \sqrt{1+\frac{m}{a \pi U_{\infty}}}
$$

(c) Going back to $\psi$ :

$$
\begin{aligned}
\psi & =U_{\infty} y+\frac{m}{2 \pi} \overbrace{\arctan \left(\frac{y}{x+a}\right)}^{\theta_{1}}-\frac{m}{2 \pi} \overbrace{\arctan \left(\frac{y}{x-a}\right)}^{\theta_{2}} \\
& =U_{\infty} y-\frac{m}{2 \pi} \underbrace{\arctan \left(\frac{2 a y}{x^{2}+y^{2}-a^{2}}\right)}_{-\left(\theta_{1}-\theta_{2}\right)}
\end{aligned}
$$

A "Rankine oval" is defined by a curve $\psi=0$, or

$$
\begin{equation*}
U_{\infty} y-\frac{m}{2 \pi} \arctan \left(\frac{2 a y}{x^{2}+y^{2}-a^{2}}\right)=0 \tag{1}
\end{equation*}
$$

Maximum half-width, $h$, is obtained when $x=0$ :

$$
\begin{aligned}
& U_{\infty} h=\frac{m}{2 \pi} \arctan \left(\frac{2 a h}{h^{2}-a^{2}}\right) \\
& \frac{2 \pi U_{\infty} h}{m}=\operatorname{arccot}\left(\frac{h^{2}-a^{2}}{2 a h}\right)
\end{aligned}
$$



$$
\begin{equation*}
\Rightarrow h\left[1-\left(\frac{a}{h}\right)^{2}\right]=2 a \cot \left(\frac{2 \pi U_{\infty} h}{m}\right) \tag{2}
\end{equation*}
$$

Problem Solution by Sungyon Lee, Fall 2005
${ }^{1} a x^{2}+b x+c=0, x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$


Figure 1: MATLAB ${ }^{\oplus}$ plot of streamlines for a Rankine oval.

MIT OpenCourseWare
http://ocw.mit.edu

### 2.25 Advanced Fluid Mechanics

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

