
  
    

 
  

 

    
 

 
  

 
 

  
 

 

    

  
 

  

  

 
  

 
 

   
 

Viscous Decay of a Free Vortex
This question revisits the model of a hurricane or tornado consisted in the first Quiz. We 

developed a model of a strongly rotating system that consisted of a rigid body motion for r ≤ R 
and an ideal vortex for r ≥ R and we calculated the distribution of viscous stress in the outer 
region of the flow. In a real tornado or hurricane or other vortical flow, viscous effects 
eventually cause the vortex to ‘spin down’ and decay away (unless of course the vortex is “fed” 
with energy – for example by natural convection over warm water).  
To analyze this problem consider the following physical picture; a very long cylindrical rod of 
radius R dipped into a semi-infinite container of Newtonian fluid. The rod initially rotates at a 
constant angular velocity Ω and establishes a unidirectional flow vθ (r,t )  in the fluid for r ≥ R.

(a) Show that the steady-state velocity profile in the fluid is the same as that expected in an ideal 
vortex (for r  > R) and by calculating the circulation for closed paths that either exclude or 
include the rod, show that the circulation and velocity is identical to that obtained in an 
axisymmetric free vortex of strength Γ = 2πΩR2.

(b) Find the torque (per unit length) exerted on this rod by the fluid. 

(c) Now imagine that the radius of the rod is decreased to zero and the rotation rate is 
correspondingly increased in such a way that the product Γ = 2πΩR2 remains constant. In the
limit R → 0 we obtain the ideal line vortex discussed in class. At time t = 0, this limiting
cylinder instantaneously stops rotating. The line vortex in the fluid will slowly decay away 
due to viscous dissipation of energy, and we postulate that the transient velocity field will 
remain of the form vθ(r,t).

    Write out and simplify (BUT DO NOT ATTEMPT TO SOLVE YET) the appropriate 
components of the Navier-Stokes equation and use the initial condition (of fixed circulation) 
to non-dimensionalize the velocity using a new variable g = rvθ (Γ / 2π ) . Write down the
initial condition and boundary conditions of this flow. 

⇒ You may assume that the pressure field remains independent of θ at all times (as was true in
the steady flow case). 

(c) Just as in the Rayleigh problem studied in class, there are no natural scales for r and t in 
this time-dependent viscous decay problem. Hence the solution will be a similarity solution in a 
dimensionless similarity variable η = r νt . This allows the partial differential equation you
obtained above to be reduced to an ordinary differential equation and then solved. Use this 
given form of the similarity variable and substitute it into the θ component of the governing
equation. Show that the equation reduces to an ordinary differential equation with appropriate 
collapse of the initial and boundary conditions. 



  

 

 
  

 

 
 

 
     

 

 
 

  
 

 

 
  

 

 

 
  

  
  

 
   

 

  

 

 
 

 

 
 

 
  

 
  

 

 
 
 

 

 
 
 

 

  

 

 
 

 

 
 

 
  

 
  

 

 
 
 

 

 
 
 

 
 

2.25 Viscous Flows 

(d) Show (by direct substitution) that the partial differential equation is satisfied by the following 
solution: 

rvθ (r, t) = [1 − exp(− r2 νt)]  or equivalently g(η) = [1− exp(−η2 )] (3.2)Γ 2π 

Check that this solution also satisfies all of your initial and boundary conditions. 
(d) Find an expression for the time-varying location of the maximum velocity in the flow, Also 
find an expression for the vorticity field. On side-by-side plots, sketch the velocity field and 
vorticity field for t < 0 and the evolution of these profiles for various times t ≥ 0  (or you can 
make plots in MATLAB® and display them using the subplot(i,j).m command.

For more on this see: http://www.spc.noaa.gov/faq/tornado/#The Basics 

The following expressions (in cylindrical polar coordinates) may be useful: 
1 ∂(rv r ) 1 ∂vθ ∂vzConservation of Mass: + + = 0r ∂r r ∂θ ∂z 

The components of vorticity 

1 ∂vz ∂vθ ∂vr ∂v z 1 ∂(rvθ ) 1 ∂vrωr = ωθ = − ω z = −r ∂θ 
− ∂z ∂z ∂r r ∂r r ∂θ 

∂ ⎛ vθ ⎞ 1 ∂vrThe shear rate ( γ̇  ) on a plane with normal in the r direction; γ̇ rθ = r ⎝⎜ ⎠⎟ +∂r r r ∂θ 

The Navier stokes equations in the r-θ plane:

⎛∂vr ∂vr vθ ∂vr vθ 
2 ∂vr ⎞ ∂p ⎡ ∂ ⎛1 ∂(rvr )⎞ 1 ∂2vr ∂2vr 2 ∂vθ

⎤
ρ⎜ + vr + − + v z ⎟ = − + µ ⎢ 

⎠⎟ 
+ + − ⎥ + ρgr

⎝ ∂t ∂r r ∂θ r ∂z ⎠ ∂r ⎢∂r ⎝
⎜ r ∂r r2 ∂θ2 ∂z2 r2 ∂θ ⎥⎣ ⎦

⎛∂vθ ∂vθ vθ ∂vθ vrvθ ∂vθ ⎞ 1 ∂p ⎡ ∂ ⎛ 1 ∂(rvθ )⎞ 1 ∂2vθ ∂2vθ 2 ∂vr ⎤ρ⎜ + vr + + + v z ⎟ = − + µ ⎢ 
⎝⎜ ⎠⎟ 

+ + + ⎥ + ρgθ
⎝ ∂t ∂r r ∂θ r ∂z ⎠ r ∂θ ⎢∂r r ∂r r2 ∂θ 2 ∂z 2 r2 ∂θ ⎥⎣ ⎦

2 

http://www.spc.noaa.gov/faq/tornado/#The


MIT OpenCourseWare
http://ocw.mit.edu

2.25 Advanced Fluid Mechanics 
Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu



