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Stokes Second Problem ATP 

Stokes apparently had many problems. This Second Problem is identical to the First Problem, except that 
we replace (2) with u(y = 0, t) =  Ucos(ωt) — the plate now oscillates. Note that we are interested only 
in the steady periodic solution: u behaves as cos(ωt + Φu) in time, where the phase Φu is independent of t. 
(The initial condition (4) is thus irrelevant —it washes out.) 

In the steady-periodic state the wall shear stress will be of the form 

α3 ωα4τW = CUα1 ρα2 µ cos(ωt + Φτ ), (1) 

where the phase Φτ is independent of t and C is a non-dimensional constant. Find the exponents α1, α2, α3 

and α4 by dimensional analysis. 

Hint: (one approach): See Hint for Stokes’ First Problem; make good use of the steady-periodic form 
of the solution. 
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Viscous Flow Stokes Second Problem ATP 

Solution: 

=∗Let’s start by non dimesionalizing the equations. Now write u u 
U ; thus divided by (U). 

∂u ∗ 

∂t 
= ν 

∂2u ∗ 

∂y2 
0 < y < ∞, (2) 

u ∗(y = 0, t) =  cos(ωt), (3) 

u ∗(y →∞, t) → 0, (4) 

u ∗(y, t = 0) = 0, (5) 

and hence, 

u ∗ = f(y, t, ν, ω), (6) 

(notice that no mass appears in the equations) so, 

Π1 = u ∗ , (7) 

Π2 = tyα2ωβ2 , (8) 

Π2 = ωt, (9) 

Πa 
3 = νy α3ωβ3 , (10) 

Solving the system of equations, 

α3 = −2, β3 = −1, (11) 

then, 

ν
Πa = , (12)3 y2ω 

or, 

Π3 = 
y

. (13) 
ν 
ω 

Then, reexpressing the original function in terms of the non-dimensional parameters, 

Π1 = f∗(Π2, Π3), (14) 

or, 

u y
, ωt), (15)

U 
= f∗∗(  ν 

ω 
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Viscous Flow Stokes Second Problem ATP 

uNow, for the steady periodic behaviour must be ‘sinusoidal’ in time, so U 

u 
 

y 
   

y 
  

cos ωt + Φ (16)= A ν νU 

where, 

ωω

A(0) = 1 and Φ(0) = 0. (17) 

Furthermore, 

∂u 
τW = −µ 

∂y 
|y=0 (18) 

 
1 1 

 
A1(0) ) sin(ωt + Φ(0))Φ1(0)) cos(ωt + Φ(0)) − A(0) (19)τW = −µU ν ν 

ωω 

1 
  

A1(0) cos(ωt + Φ(0)) − Φ1(0) sin(ωt + Φ(0)) (20)τW = −µU .ν 
ω

Finally, the last equation can be reexpressed as: 

 0.51 
 

A1(0)2 + Φ1(0)2 cos(ωt + Φ(0)τ ). (21)τW = −µU 

= arctan Φ
'(0) 

A' (0) 

ν 
ω

where, Φ0 
τ ; and A1(0) and Φ1(0) are ‘universal constants’. 

D 

Problem Solution by MC, Fall 2008 
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