MIT Department of Mechanical Engineering
 2.25 Advanced Fluid Mechanics

Problem 6.21

This problem is from "Advanced Fluid Mechanics Problems" by A.H. Shapiro and A.A. Sonin

The sketch shows a circular bearing pad which rests on a flat base through the intermediary of a film of viscous liquid of instantaneous thickness $h(t)$. The load W causes the pad to sink slowly at the speed S, and this squeezes the liquid out from under the pad. Assume that $h \ll D$, that the viscosity is very high, and that the speed S is very small.

- (a) Making approximations (state them precisely) consistent with theses assumptions, show that the settling speed is

$$
\begin{equation*}
S=\frac{32}{3 \pi} \frac{W h^{3}}{\mu D^{4}} \tag{6.21a}
\end{equation*}
$$

- (b) An apparatus with two very flat plates of 0.3 m diameter carries a load of 100 kg on a film 0.003 cm thick. If the liquid is a heavy oil with a kinematic viscosity of $10 \frac{\mathrm{~cm}^{2}}{\mathrm{~s}}$ and a density of $0.93 \frac{\mathrm{gm}}{\mathrm{cm}^{3}}$, estimate the speed S.
- (c) If the load W is constant, and the gap width is h_{0} at time zero, show that the width h varies with time accordingly to

$$
\begin{equation*}
\frac{h}{h_{0}}=\left[1+\frac{64}{3 \pi} \frac{W h_{0}^{2}}{\mu D^{4}} t\right]^{-\frac{1}{2}} \tag{6.21b}
\end{equation*}
$$

- (d) Calculate, for the initial conditions of part (b), the time (in hours) required for the gap width to be decreased to half its initial value.
- (e) Suppose now that the initial thickness is h_{0}, and that a constant upward force F pulls the disk away from the base. Show that the disk will be pulled away in a time

$$
\begin{equation*}
t_{\infty}=\frac{3 \pi}{64} \frac{\mu D^{4}}{h_{0}^{2} F} \tag{6.21c}
\end{equation*}
$$

$N B$ When h_{0} is very small, the time t_{∞} is very large. This is the basis for the phenomenon of viscous adhesion, e.g., adhesives such as Scotch tape, or the apparent adhesion of accurately-ground metal surfaces.

Solution:

- (a) In terms of the flow geometry, the problem is similar to 6.3 ; the difference here being that the flow is "unsteady". First, let's use the continuity equation to get some information about the order of magnitude of the velocities, $\underset{\sim}{1}$

$$
\begin{equation*}
\frac{1}{r} \frac{\partial}{\partial r}\left(r u_{r}\right)+\frac{\partial u_{z}}{\partial z}=0, \Rightarrow \frac{u_{r}}{r} \sim \frac{u_{z}}{z} \tag{6.21~d}
\end{equation*}
$$

Now, let's go to the NS equations. Writing the NS equations in cylindrical gap between the bearing pad and ground,

$$
\begin{equation*}
\rho(\underbrace{\frac{\partial u}{\partial t}}_{I}+\underbrace{u_{r} \frac{\partial u_{r}}{\partial r}}_{I I}+\underbrace{\frac{u_{\theta}}{r} \frac{\partial u_{r}}{\partial \theta}}_{=0}+\underbrace{u_{z} \frac{\partial u_{r}}{\partial z}-\frac{u_{\theta}^{2}}{r}}_{I I I})=-\frac{\partial p}{\partial r}+\mu[\underbrace{\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u_{r}}{\partial r}\right)}_{I V}+\underbrace{\frac{1}{r^{2}} \frac{\partial^{2} u_{r}}{\partial \theta^{2}}}_{=0}+\underbrace{\frac{\partial^{2} u_{r}}{\partial z^{2}}}_{V}-\underbrace{\frac{u_{r}}{r^{2}}}_{V I}-\underbrace{\frac{2}{r^{2}} \frac{\partial u_{\theta}}{\partial \theta}}_{=0}] \tag{6.21e}
\end{equation*}
$$

where we relabeled the terms to further make an order of magnitude estimation, also notice that due to symmetry, the terms $\frac{\partial}{\partial \theta}$. Let's start comparing the terms $I V$ and $V, \underline{2}$

$$
\begin{equation*}
\frac{I V}{V} \sim \frac{h^{2}}{D^{2}} \ll 1 \tag{6.21f}
\end{equation*}
$$

so we can neglect the term $I V$ compared with term V. Also, notice that $V I \sim I V$, then $V I$ can be neglected when compared to V. Now, let's compare $I I$ to V, then

$$
\begin{equation*}
\frac{I I}{V} \sim \frac{\rho v_{r} D}{\mu} \frac{h^{2}}{D^{2}} \ll 1 \tag{6.21~g}
\end{equation*}
$$

then $I I$ can also be neglected when compared to V. Now, when comparing $I I I$ to V, we first notice that $I I \sim I I I$ since

$$
\begin{equation*}
\frac{I I}{I I I} \sim \frac{u_{r} / r}{u_{z} / z} \sim \frac{u_{z} / z}{u_{z} / z} \sim 1 \tag{6.21h}
\end{equation*}
$$

where we have used the information obtained from mass conservation. Hence, $I I I$ vanishes when compared to V.
Now, when comparing I to V, we have

$$
\begin{equation*}
\frac{I}{V} \sim \frac{\rho h^{2}}{\mu \tau} \tag{6.21i}
\end{equation*}
$$

where τ is the time scale involved in the process. The source of unsteadyness is the pad settling down, which renders u_{r} and other flow variables time-dependent. Hence,

$$
\begin{equation*}
\tau \sim \frac{h}{S} \Rightarrow \sim \frac{\rho S h}{\mu} \tag{6.21j}
\end{equation*}
$$

Since it is given that S is very small and also h is small, we can safely assume that I can be neglected compared to V. Hence we have the NS equation as

[^0]\[

$$
\begin{equation*}
-\frac{\partial p}{\partial r}+\mu \frac{\partial^{2} u_{r}}{\partial z^{2}}=0 \tag{6.21k}
\end{equation*}
$$

\]

Integrating we get $u_{r}(z)$,

$$
\begin{gather*}
u_{r}=\frac{1}{2 \mu}\left(-\frac{\partial p}{\partial r}\right)\left(z h-z^{2}\right) \Rightarrow \tag{6.211}\\
Q(r)=2 \pi r \int_{0}^{h} u_{r}(z) d z=\frac{h^{3} \pi r}{6 \mu}\left(-\frac{\partial p}{\partial r}\right)=\frac{h^{3} \pi r}{6 \mu}\left(-\frac{d p}{d r}\right) \tag{6.21~m}
\end{gather*}
$$

Note that Q is a function of r, since the settling down of the pad drives greater and greater flow rates as r increases! This can be verified by applying mass conservation in a cylindrical CV, as shown. The height of this CV changes as $h(t)$.

$$
\begin{gather*}
\frac{\partial}{\partial t} \int_{C V} \rho d V+\int_{C V} \rho\left(\underline{V}-\underline{V}_{c s}\right) \cdot \underline{n} d A=0 \tag{6.21n}\\
\Rightarrow \frac{\partial}{\partial t}\left(\pi r^{2} h\right)+2 \pi r h u_{r}=0, \Rightarrow-\pi r^{2} \frac{d h}{d t}=2 \pi r h u_{r}=Q(r) \tag{6.21o}
\end{gather*}
$$

Since $\frac{d h}{d t}=-S$, we have

$$
\begin{equation*}
Q(r)=\pi r^{2} S \tag{6.21p}
\end{equation*}
$$

Now, we can find the value of the pressure gradient using the flow, then

$$
\begin{gather*}
-\frac{d p}{d r}=\frac{6 \mu Q}{h^{3} \pi r}=\frac{6 \mu \pi r^{2} S}{h^{3} \pi r}=\frac{6 \mu r S}{h}, \Rightarrow \tag{6.21q}\\
d p=-\frac{6 \mu S r}{h^{3}} d r, \Rightarrow p(r)=\frac{3 \mu S}{h^{3}}\left(\frac{D^{2}}{4}-r^{2}\right), \tag{6.21r}
\end{gather*}
$$

where the BC used is $p(D / 2)=0$ (gauge pressure).
Now, we can perform a vertical force balance on the pad,

$$
\begin{equation*}
W=\frac{3 \mu S}{h^{3}} \int_{0}^{\frac{D}{2}}\left(\frac{D^{2}}{4}-r^{2}\right) 2 \pi r d r=\frac{3 \pi \mu S D^{4}}{32 h^{3}} \tag{6.21s}
\end{equation*}
$$

then, we can finally get the velocity

$$
\begin{equation*}
S=\frac{32 W h^{3}}{3 \pi \mu D^{4}} \tag{6.21t}
\end{equation*}
$$

- (b) Plugging in the numbers, we obtain

$$
\begin{equation*}
S=\frac{32 \times 100 \times \times 27 \times 10^{-15}}{3 \pi \times 0.93 \times 81 \times 10^{-4}}=1.2 \times 10^{-9}[\mathrm{~m} / \mathrm{s}] \tag{6.21u}
\end{equation*}
$$

very small, which agrees with our assumptions.

- (c) From the velocity equation, we can integrate to obtain the displacement

$$
\begin{equation*}
S=-\frac{d h}{d t}=\frac{32 W h^{3}}{3 \pi \mu D^{4}} \Rightarrow-\int_{h_{0}}^{h} \frac{d h^{\prime}}{h^{\prime 3}}=\int_{0}^{t} \frac{32 W}{3 \pi \mu D^{4}} d t^{\prime} \tag{6.21v}
\end{equation*}
$$

then, upon integration we have

$$
\begin{equation*}
-\left[-\frac{1}{2} \frac{1}{h^{\prime 2}}\right]_{h_{0}}^{h}=\left.\frac{32 W t^{\prime}}{3 \pi \mu D^{4}}\right|_{0} ^{t} \Rightarrow \frac{1}{h^{2}}-\frac{1}{h_{0}^{2}}=\frac{64 W t}{3 \pi \mu D^{4}} \Rightarrow \frac{1}{h^{2}}=\frac{1}{h_{0}^{2}}\left[1+\frac{64 W h_{0}^{2}}{3 \pi \mu D^{4}} t\right] \tag{6.21w}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\Rightarrow \frac{h}{h_{0}}=\left[1+\frac{64 W h_{0}^{2}}{3 \pi \mu D^{4}} t\right]^{-\frac{1}{2}} \tag{6.21x}
\end{equation*}
$$

- (d) Using $2 h=h_{0}$, and plugging in the variables, we get the required time as 10.4 hours.
- (e) Since $S^{\prime}=\frac{d h}{d t}$, instead of $-\frac{d h}{d t}$, we have

$$
\begin{equation*}
\frac{1}{h_{0}^{2}}-\frac{1}{h^{2}}=\frac{64 F t}{3 \pi \mu D^{4}} \tag{6.21y}
\end{equation*}
$$

As the disk is pulled away, $h \rightarrow \infty$ then for this limit,

$$
\begin{equation*}
t_{\infty}=\frac{3 \pi \mu D^{4}}{64 h_{0}^{2} F} \tag{6.21z}
\end{equation*}
$$

MIT OpenCourseWare
http://ocw.mit.edu

2.25 Advanced Fluid Mechanics

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ By now, you should be familiar with this method of obtaining extra information that can be quite useful when comparing terms in the NS equations.
 ${ }^{2}$ We'll compare the terms with term V because, since the gap is small, this is likely to be the largest derivative.

