MIT Department of Mechanical Engineering 2.25 Advanced Fluid Mechanics

Problem 6.13
This problem is from "Advanced Fluid Mechanics Problems" by A.H. Shapiro and A.A. Sonin

An oil barge has developed a fine crack in its side, running a length L perpendicular to the sketch. Oil leaks out of the crack and runs up the side of the barge (inclined at an angle θ) in a very thin layer, as sketched. Assume that the flow in the oil layer is highly viscous, that the oil is less dense than the water ($\rho_{0}<\rho_{w}$), and that it is much more viscous than water $\left(\mu_{0} \gg \mu_{w}\right)$.
(a) If the oil layer is found to have a thickness b, what is the oil volume flow rate Q out through the slit?
(b) Describe qualitatively how the field differs when the viscosity of the water is not negligible compared with the oil viscosity.

MIT OpenCourseWare
http://ocw.mit.edu

2.25 Advanced Fluid Mechanics

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

