
  

THE GENERAL FORM	  OF REYNOLDS	  EQUATIONS

• For a general (moving) boundary with ( h x,t ) 
• The flow can	  be	  unsteady	  but is fully-‐developed	  
locally.	  

1. Beginning from	  the locally fully-‐developed	  flow derived in class, for which we required
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Couette Poiseuille
(wall driven) (pressure driven)

Integrating	  this expression	  gives an expression	  for	  the	  local flow rate	  q′ at any given slice:

h(x,t ) h(x,t)3 ⎛ ∂p ⎞ 1q′(x,t) ≡ ∫ vx dy = − 
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+ Uh(x,t) (2)
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**Note that this may not be constant along the channel because of the squeezing flow
induced by vertical motion of the channel boundary at h(x,t).	  

2. We combine with this with an integrated analysis of the flow in the vertical direction, and
the use of what is commonly called the “kinematic boundary condition” at the upper plate.

– This links the displacement in the boundary motion to the local	  fluid	  flow rate
– Essentially	  we apply conservation of mass to the thin strip of fluid ( h x,t )dx 

∂vya).	   We start with ∂vx + = 0 , integrate	  in y to	  obtain
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The second integral introduces	  the	  boundary	  conditions	  for the	  
vertical rate of displacement of the upper and lower surfaces (which may be stationary	  or
moving BCs).	  
To find the first	  term, labeled ? in eq. 3, we need to use the Leibnitz Theorem,	  in the form:( ) 
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general form	  of Reynolds Lubrication	  Equation.	  

recognizing that here f = vx , a = 0 and	  b = h(x), we can	  write that	  

h(x ) ∂vx d(0) d h dhdy =
 vx dy − U
 y= 0 (4)vx y= h − 

The first term	  on the right-hand	  side is nothing	  but the	  variation	  in the	  flow rate	  of fluid	   
along	  the gap (which again	  we re-emphasize might not be constant because of the 
squeezing	  induced	  by	  the	  top plate	  etc).	  

• The terms	  in { } again have to be evaluated	  based	  on the	  actual boundary	  conditions	  of the
specific	  problem at the top and bottom	  plates.

dq′ dh
Combining eq.(3) with 2(b) results in the expression: − U y=h 

= 0 (5)	  h + Vy=dx dx 

[Alternately you can apply a control volume analysis directly to a thin slice of the form	  
shown	  in the	  sketch	  above	  to	  arrive	  at exactly the same final result].

b) To simplify this result, we can recognize that the equation for the location of the free
surface is simply the solution of the equation: y − h(x,t) = 0 . Sincematerial points on the	  
surface	  stay	  on the	  surface as it moves and deforms, we can	  take the convected derivative of
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This is commonly known as the	  kinematic boundary	  condition and it is of exactly the same 
form	  as the	   expression	  derived in eq. (5). Combining eq. (5) and (6)	  thus	  results	  in the	  
following	  much simpler expression:

dq′ ∂h
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3) We can now combine this with the result obtained	  in eq. (2) to	  obtain	  the following
nonlinear coupled PDE:
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This	  is referred to	  as	  the If the shape	  of the
boundary and it’s displacement are specified (i.e. h(x,t) is given) then	  it	  gives a second
order differential equation	  that can	  be	  solved	  for the	  pressure	  field	  p(x,t) (subject to
appropriate boundary	  conditions on	  the pressure field at the edge of the fluid film).
Alternatively it can be combined with a global force balance on a moving block or plate or
other object that has a thin film	  of viscous fluid underneath it to develop	  a differential
equation for the motion of the block. It is thus the starting	  point for many different
research	  topics	  as	  well as	  homework or qualifying problems!
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There are many, many generalizations, e.g.
– cylindrical coordinates
– compressible fluids
– ‘suction’ or ‘porous wall’	  boundary conditions
– stretching	  surfaces,	  collapsing,	  bending	  surfaces

*All collapse down to the same basic physics, which is the key thing
to internalize:

(i) nondimensionalize governing	  equations of motion.
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(iii) solve	  locally	  fully-‐developed	  viscous	  flow in slice dx
(iv) integrate	  across	  the slice	  (i.e. the	   “fast” direction)	  to find an integrated quantity	  

such	  as	  the	  local flow rate	  per unit depth,	  q′(x) 
(v) use conservation of mass or other appropriate BCs to integrate	  along	  the “slow”	  

direction,	  along	  which	  integrated	  quantity	  q′(x) varies
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Remember that effectively we have the following	  two independent	  constraints:
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L andt t t y y xV 
i.e. the time-‐scale for diffusion of vorticity information across the	  thin gap is always much
shorter than the time required for the information to be convected along the gap by the
fluid	  flow (with convection time tconv ~ L / V ) or to	  diffuse along	  the	  gap	  (with	  a
characteristic time scale tx ~ L2 ν ). This is why	  we	  say	  the	  flow is locally	  fully-developed.

• The second constraint is the same as saying: h2 L2  1 
• The first	  constraint	  can	  be rearranged several	  different	  ways:
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(ii) drop “small” terms i.e. ⎟⎠
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