Flow inside a cylinder which is suddenly rotated

Figure 1: Geometry of the problem

A Newtonian liquid with density ρ and viscosity μ is initially at rest in a vertical, infinitely long cylinder of radius R. At time 0 , the cylinder starts to rotate with a constant rotational speed, Ω about its axis. This problem is a transient flow like the Rayleigh plate problem (or Stokes' 1st problem). The governing equation is the following:

$$
\begin{equation*}
\frac{\partial V_{\theta}}{\partial t}=\nu\left(\frac{\partial^{2} V_{\theta}}{\partial r^{2}}+\frac{1}{r} \frac{\partial V_{\theta}}{\partial r}-\frac{V_{\theta}^{2}}{r^{2}}\right) \tag{1}
\end{equation*}
$$

The boundary/initial conditions are the following:

$$
\left\{\begin{array}{c}
V_{\theta}=\Omega R \text { at } r=R, 0<t \tag{2}\\
V_{\theta}=\text { finite at } r=0,0 \leq t \\
V_{\theta}=0 \text { at } t=0,0 \leq r \leq R
\end{array}\right\}
$$

This problem can be solved using separation of variables. The solution finally leads to Bessel equation and there is a bit of algebra in the process. The final solution will be:

$$
\begin{equation*}
V_{\theta}(r, \theta)=\Omega r+2 \Omega R \sum_{1}^{\infty} \frac{J_{1}\left(\alpha_{k} r / R\right)}{\alpha_{k} J_{0}\left(\alpha_{k}\right)} \exp \left(-\frac{\nu \alpha_{k}^{2}}{R^{2}} t\right) \tag{3}
\end{equation*}
$$

in which J_{1} and J_{0} are respectively the first and zeroth order Bessel functions of the first kind and α_{k} is the $k-t h$ root of J_{1}.

MIT OpenCourseWare
http://ocw.mit.edu

2.25 Advanced Fluid Mechanics

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

