MIT Department of Mechanical Engineering 2.25 Advanced Fluid Mechanics

Problem 4.19

This problem is from "Advanced Fluid Mechanics Problems" by A.H. Shapiro and A.A. Sonin

A circular hovering platform of radius R is to support a mass M (its own mass plus a load). A thin, sheet-like jet (width w) is directed downward at the platform's periphery, as shown. The jet is fed from a settling chamber which is maintained at a pressure p_{0} by an external pump. The system is to hover at an elevation h which is large compared to the width w of the sheet-like jet, but small compared with R.

When the jet is turned on, the pressure under the platform builds up and the platform rises until a steady state is reached. It is this steady state that we are concerned with.
(a) Describe the physical mechanism which allows the pressure p_{b} under the platform be higher than the atmospheric pressure p_{a}, in steady state, and thus to support a weight

$$
M g=\left(p_{b}-p_{a}\right) \pi R^{2}
$$

(b) Given the system weight $M g$, the platform radius R, the jet width w, and the air density ρ, derive approximate expressions for (i) the volume flow rate Q of air required and (ii) the gage pressure p_{0} required in the settling chamber, in order to maintain a ground clearance h. You may assume incompressible, inviscid flow in the peripheral jet, and make physical approximations consistent with the jet being thin compare with $h(w \ll h)$ and the gage pressure $p_{b}-p_{a}$ below the platform being very small compared with the gage pressure $p_{0}-p_{a}$ in the settling chamber.

Solution:

Given: $M g, R, w, \rho$; Unknown: Q, p_{0}; Assume: incompressibility, inviscid, $R \gg h \gg w$

Consider a FBD that consists of the entire system:

$$
\begin{equation*}
F_{z}=0=-M g-p_{a}\left(\pi R^{2}\right)+p_{b}\left(\pi R^{2}\right) \quad \Rightarrow p_{b}-p_{a}=\frac{M g}{\pi R^{2}} \tag{4.19a}
\end{equation*}
$$

Consider streamline coordinates that describe the jet flowing outward:

The normal component of Euler's equation states that

$$
-\frac{v^{2}}{r}=-\frac{1}{\rho} \cdot \frac{\partial p}{\partial n}-g \frac{\partial z}{\partial n} \quad(\text { from streamline handout }) \quad \Rightarrow \frac{\partial}{\partial n}(p+\rho g z)=\rho \frac{v^{2}}{r}
$$

Integrate both sides with respect to $d n:^{1}$

$$
\begin{equation*}
p+\underbrace{\left.\rho g z\right|_{\text {out }} ^{\text {in }}}_{\approx 0}=\int_{\text {out }}^{\text {in }} \rho \frac{v^{2}}{r} d n \approx \frac{v^{2}}{h} w \Rightarrow p_{b}-p_{a}=\rho \frac{v^{2}}{h} w \tag{4.19b}
\end{equation*}
$$

Combine Eqs. (4.19a) and (4.19b) to solve for v :

$$
\begin{equation*}
\rho \frac{v^{2}}{h} w=\frac{M g}{\pi R^{2}} \quad \Rightarrow v=\sqrt{\frac{M g h}{\rho \pi R^{2} w}} \tag{4.19c}
\end{equation*}
$$

Since $Q=v \times$ Area,

$$
\begin{equation*}
Q=\underbrace{(2 \pi R) w}_{\approx \text { jet area }} \sqrt{\frac{M g h}{\rho \pi R^{2} w}} \quad \Rightarrow Q=2 \sqrt{\frac{M g \pi w h}{\rho}} \tag{4.19~d}
\end{equation*}
$$

Consider a streamline inside hovercraft:

[^0]Since $R \gg w$, assume quasisteady at station 1 .

$$
\begin{gather*}
\Rightarrow p_{1}+\frac{1}{2} \rho v_{1}^{2}+\rho g \hbar_{1}=p_{a}+\frac{1}{2} \rho v^{2}+\rho g \hbar_{2} \\
\Rightarrow p_{o}=p_{1}-p_{a}=\frac{1}{2} \rho v^{2} \quad \Rightarrow p_{o}=\frac{1}{2}\left(\frac{M g h}{\pi R^{2} w}\right) \tag{4.19e}
\end{gather*}
$$

MIT OpenCourseWare
http://ocw.mit.edu

2.25 Advanced Fluid Mechanics

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ The hydrostatic term is negligible because the fluid sheet is thin.

