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2.25 Advanced Fluid Mechanics 

Problem 4.12 
This problem is from “Advanced Fluid Mechanics Problems” by A.H. Shapiro and A.A. Sonin 

A soap bubble (surface tension σ) is attached to a narrow glass tube of the dimensions shown. The initial 
radius of the bubble is R0. At t = 0, the end of the tube is abruptly opened. 

a) Obtain a solution for R(t), assuming that the flow is : (i) incompressible ans (ii) inviscid, that (iii) grav
itational effects are negligible, and that (iv) the temporal acceleration term in Euler’s equation is negligible 
(we are referring to the term involving the partial derviative of the velocity with time). 

b) Derive a criterion for when assumption (iv) is satisfied. 
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Solution:
 

(a) To obtain an expression for	 R, we will write mass conservation across the moving control volume 
outlined in the figure above then since the flow is inviscid, incompressible and steady, we can write 
Bernoulli’s equation (conservation of momentum) across a streamline from point 1 to point 2. 

• Mass conservation 

Using form A for mass conservation on the moving control volume drawn above, we have   d( ρ dV )
CV (t) + ρ(v − vc).n dA = 0	 (4.12a)

dt CS(t) 

The change in volume dV is the change in volume of the bubble dt  
d( dV )

CV (t) dV dR 
= = 4πR2	 (4.12b)

dt dt dt 

Over the CS, (v − vc).n = 0 except at station 2 where (v − vc).n = +V2. 
We get 

4πR2 dR 
+ V2A = 0 (4.12c)

dt 

• Bernoulli’s equation 

Since the flow is inviscid, incompressible and steady, we can use steady Bernoulli across a stream
line going from point 1 to point 2. 

1 
p1 = pa + ρV 2	 (4.12d)

2	 2 

• The pressure inside the bubble is given by Laplace’s law 

4σ 
p1 − pa =	 (4.12e)

R(t) 

This equation results from the fact that for a very thin soap bubble in air, there are two air-soap 
interfaces: one on the inside of the bubble and the other on the outside, each having the same 
radius of curvature, R. Hence the total Laplace pressure within the bubble is twice what it would 
be for a bubble having a single interface (e.g. air bubble in water), i.e. 2 × 2σ/R. Combining 
Eq. 4.12d and Eq. 4.12e, we get 
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2σ 

V2 = 2 (4.12f) 
ρR 

Inserting Eq. 4.12f into Eq. 4.12c yields  
dR 2σ

2πR 
5 
2 +

dt ρ 
A = 0 (4.12g) 

 
4π d(R )

7
2

7 dt 
2σ 

+ A = 0 (4.12h)
ρ 

Integrating Eq. 4.12h with the initial condition R(t = 0) = R0 gives 

2
7

 
7 2σ 

R(t) = (R − At)0 4π ρ 

7 
2 (4.12i) 

(b) For the unsteady term in Euler’s equation (or Bernoulli) to be negligible, we need 

∂V 
∂t 
« V 

∂V 
∂x 

. (4.12j)  
Let l be a characteristic length scale in the x direction, τ a characteristic time scale and σ 

ρR0 
a 

characteristic velocity.  
R3

0 ρR0From Eq. 4.12i, we see that a characteristic time scale for this process is τ = .A σ 

For the unsteady term to be negligible, we need 

l
τ   (4.12k)

σ 
ρR0 

Which gives 
lA « R3 

0 (4.12l) 

The volume of the pipe needs to be negligible compared to the volume of the bubble for this process 
to be considered pseudo-steady. 

D 

Problem Solution by AH, Fall 2010 
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