MIT Department of Mechanical Engineering 2.25 Advanced Fluid Mechanics

Problem 1.14

This problem is from"Advanced Fluid Mechanics Problems" by A.H. Shapiro and A.A. Sonin

Cylinder with Liquid Rotating

- (a) Demonstrate that when a cylindrical can of liquid rotates like a solid body about its vertical axis with uniform angular velocity, ω, the free surface is a parabolic of revolution.
- (b) Demonstrate that the pressure difference between any two points in the fluid is given by

$$
\begin{equation*}
p_{2}-p_{1}=\rho g\left(z_{2}-z_{1}\right)+\rho \omega^{2}\left(r_{2}^{2}-r_{1}^{2}\right) / 2, \tag{1.14a}
\end{equation*}
$$

where z is elevation and r is the radial distance from the axis.

- (c) How would the results differ if the can were of square cross section?

Solution:

- (a) If the fluid rotates like a solid body, then

$$
\begin{equation*}
a_{r}=\frac{V_{\theta}^{2}}{r}=\omega^{2} r \tag{1.14b}
\end{equation*}
$$

then, for the fluid

$$
\begin{equation*}
\frac{\partial p}{\partial r}=\rho \omega^{2} r \tag{1.14c}
\end{equation*}
$$

and now, considering gravity,

$$
\begin{equation*}
\frac{\partial p}{\partial z}=-\rho g \tag{1.14d}
\end{equation*}
$$

At the surface, $\Delta p=0$, then $\frac{\partial p_{s}}{\partial r_{s}} \delta r_{s}+\frac{\partial p_{s}}{\partial z_{s}} \delta z_{s}=0$, or $\rho \omega^{2} r_{s} \delta r_{s}-\rho g \delta z_{s}=0$, then

$$
\begin{equation*}
\omega^{2} r_{s} \delta r_{s}=g \delta z_{s}, \Rightarrow \int \omega^{2} r_{s} \delta r_{s}=\int g \delta z_{s}, \Rightarrow z_{s}=\frac{\omega^{2} r_{s}^{2}}{2 g}+\text { Const } \tag{1.14e}
\end{equation*}
$$

then the surface is a revolution paraboloid.

- (b) Now, let's integrate the radial derivative and differentiate with respect to the axial coordinate to compare the equations,

$$
\begin{equation*}
\frac{\partial p}{\partial r}=\rho \omega^{2} r, \Rightarrow p(r, z)=\rho \omega^{2} \frac{r^{2}}{2}+f(z), \Rightarrow \frac{\partial p}{\partial z}=\frac{\partial f}{\partial z} \tag{1.14f}
\end{equation*}
$$

Now, comparing both expressions for $\frac{\partial p}{\partial z}$, we notice that $\rho g=\frac{\partial f}{\partial z}$, then $f=-\rho g z+$ Const. Finally,

$$
\begin{equation*}
p(z, r)=\rho \omega^{2} \frac{r^{2}}{2}-\rho g z+\text { Const } \tag{1.14~g}
\end{equation*}
$$

then, for two different points inside the liquid,

$$
\begin{equation*}
p\left(z_{2}, r_{2}\right)-p\left(z_{1}, r_{1}\right)=\rho \omega^{2}\left(\frac{r_{2}^{2}}{2}-\frac{r_{1}^{2}}{2}\right)-\rho g\left(z_{2}-z_{1}\right) \tag{1.14h}
\end{equation*}
$$

- (c) No practical difference, the surface just would be cut by two planes instead of a cylinder (the effects of surface tension would be different, but this is unimportant as long as the surface tension contribution is small).

MIT OpenCourseWare
http://ocw.mit.edu

2.25 Advanced Fluid Mechanics

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

