MIT Department of Mechanical Engineering 2.25 Advanced Fluid Mechanics

Problem 1.14

This problem is from"Advanced Fluid Mechanics Problems" by A.H. Shapiro and A.A. Sonin

Cylinder with Liquid Rotating

- (a) Demonstrate that when a cylindrical can of liquid rotates like a solid body about its vertical axis with uniform angular velocity, ω, the free surface is a parabolic of revolution.
- (b) Demonstrate that the pressure difference between any two points in the fluid is given by

$$
\begin{equation*}
p_{2}-p_{1}=\rho g\left(z_{2}-z_{1}\right)+\rho \omega^{2}\left(r_{2}^{2}-r_{1}^{2}\right) / 2, \tag{1.14a}
\end{equation*}
$$

where z is elevation and r is the radial distance from the axis.

- (c) How would the results differ if the can were of square cross section?

MIT OpenCourseWare
http://ocw.mit.edu

2.25 Advanced Fluid Mechanics

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

