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2.25 Advanced Fluid Mechanics 

Problem 1.10 
This problem is from “Advanced Fluid Mechanics Problems” by A.H. Shapiro and A.A. Sonin 

The Swiss scientist Auguste Picard developed a navigable diving vessel, the “bathyscape”, to investigate the 
ocean at great depths (http://en.wikipedia.org/wiki/Bathyscaphe). In 1960, his son Jacques, accompanied 
by Lt. Don Walsh of the U.S. Navy, reached a depth of 10, 916 m in the Pacific’s Mariana Trench. 

Suppose that the ocean is at constant temperature, has a density of 1030 kg/m3 at sea level, and is charac
terized by a constant isothermal bulk compressibility   

1 ∂ρ 
κT ≡ = 4.6 × 10−10 m2/N. (1.10a)

ρ ∂p T 

Compute the pressure at a depth of 11 km, 

(a) assuming the density is constant at the sea level value, and 

(b) taking the water’s compressibility into account. 

For part (b), derive an expression for the pressure as a function of depth below the surface, considering the 
sea level density ρ0 and pressure p0, as well as κT , as given quantities. 
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Courtesy of the U.S. Naval History Center. Photograph in the public domain. 
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Solution: 

(a) Assuming the density is constant at the sea level value and the pressure at sea level is p0 = 1.01×105 Pa, 
we find that 

p = p0 − ρgh (1.10b) 

= 1.01 × 105 Pa − (1030 kg/m3)(9.8 m/s2)(−11, 000 m) 

= 1.11 × 108 Pa 

= 111 MPa 

(b) Taking the water’s compressibility into account, the density of water ρ will vary with pressure p. First 
we will solve the compressibility equation [Eq. (1.10a)] by separating variables to get ρ in terms of p. p  ρ 

1 
κT dp = dρ 

ρ 
p0 ρ0 

κT (p − p0) = ln ρ − ln ρ0 = ln 
ρ 
ρ0
 

Solving for ρ, we find:
 
κT (p−p0)ρ = ρ0e (1.10c) 

At this point, you may be inclined to substitute this expression for ρ into the pressure equation 
[Eq. (1.10b)] used in part (a). However, we note that this pressure distribution assumes a constant 
density ρ (see Kundu & Cohen [K&C] pp.11). Instead, we use the more general form of the pressure 
gradient [Eq. (1.8) in K&C] and substitute Eq. (1.10c) to give 

dp 
= −ρg

dz 
κT (p−p0)= −ρ0e g. 

Again, we separate variables and integrate: p  h 

e −κT (p−p0)dp = − ρ0gdz 

p0 0   1 −κT (p−p0) − 1− e = −ρ0gh 
κT

After some algebra, we finally have
 

1
 
p = p0 − ln(1 + κT ρ0gh) (1.10d)

κT 

1   
= 1.01 × 105 Pa − ln 1 + (4.6 × 10−10)(1030)(9.8)(−11, 000)

4.6 × 10−10 m2/N 

= 114 MPa (1.10e) 

As a check on our pressure equation [Eq. (1.10d)], take the limit as x = κT ρ0gh is small. Note that 
ln(1 + x) ≈ x for small values of x. Thus, 

1 
p = p0 − ln(1 + κT ρ0gh)

κT 

1 ≈ p0 − κT ρ0gh 
κT 

= p0 − ρ0gh 
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Note, the equation above is the the same as the incompressible pressure equation [Eq. (1.10b)] in part 
(a). 

D 

Problem Solution by Tony Yu (MC updated), Fall 2006 
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