
 

 
 

 

  

  

MIT Department of Mechanical Engineering 

2.25 Advanced Fluid Mechanics 

Problem 6.05 
This problem is from “Advanced Fluid Mechanics Problems” by A.H. Shapiro and A.A. Sonin 
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Figure 1: Geometry of the problem. 

The general definition of the coefficient of viscosity, as applied to two-dimensional motions, is 

τ −μ ≡ (6.05a)
dγ/dt 

where τ is the shear stress and dγ/dt is the rate of change of the angle between two fluid lines which at time 
t are mutually perpendicular, the rate of change being measured by an observer sitting on the center of mass 
of the fluid particle. 

• (a) Show that in terms of streamline coordinates, 

τ = μ (dV/dn − V/R) (6.05b) 

where V is the resultant velocity, R is the radius of curvature of the streamline, and n is the outward-
going normal to the streamline. 
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Viscous Flows	 A.H. Shapiro and A.A. Sonin 6.05 

•	 (b) A long, stationary tube of radius R1 is located concentrically inside of a hollow tube of inside radius 
R2, and the latter is rotated at constant angular speed ω. The annulus contains fluid of viscosity μ. 
Assuming laminar flow, and neglecting end effects, demonstrate that 

P 4π 
=	 (6.05c)

μω2R2 2 
2 (R2/R1) − 1
 

where P is the power required to turn unit length of the hollow tube.
 

•	 (c) Find the special form of (b) as R2/R1 → 1, in terms of the gap width h = R2 − R1 and the radius 
R. 
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Viscous Flows	 A.H. Shapiro and A.A. Sonin 6.05 

Solution: 

•	 (a) Consider two fluid lines perpendicular to each other at time t for a particle at position P and select 
one of the lines to be parallel to the velocity vector/streamline ds. The other line will be consequently 
parallel to dn. Now track the particle till it reaches point P ' at time t + dt. Figure 2 shows the 
mentioned geometry and depicts the possible deformations as the fluid particle travels on a streamline. 
from the definition we have the following: 
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Figure 2: Deformation for a particle traveling from P at time t to P I at time t + dt along a streamline. 

τ −μ ≡ (6.05d)
dγ/dt 

As shown in Figure 2 it is easy to see that −dγ = α − β so one can write: 
τ 

μ ≡	 (6.05e)
α/dt − β/dt 

On the other hand we have the following relationship for α/dt: 

α/dt = (B'D/dn) /dt = (BD − B'B) /dndt = (BD − PP  ') /dndt = (V (n + dn)dt − V (n)dt) /dndt 
(6.05f) 

which follows to this: 

α/dt = 
dV 
dn 

(6.05g) 

for β/dt one can see that: 

β/dt = LPOP  '/dt = PP  '/Rdt = V dt/Rdt  (6.05h) 

so we will have: 
V 

β/dt = 
R 

(6.05i) 

from (e), (g), and (i) it is easy to see that: 

τ = μ (dV/dn − V/R) (6.05j) 

Note: if you feel that the geometry relationships are hard to visualize try to solve this problem assuming 
that your coordinate system is locally cylindrical with center O and your motion (locally) has only Vs 

which is Vθ so Vr = 0. Using the relationships for strain rate in cylindrical coordinates (you can find 
them in Kundu) you will get something exactly similar to the geometry proof. 
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Viscous Flows A.H. Shapiro and A.A. Sonin 6.05 

• (b) Consider the θ-component in the Navier Stokes equations for cylindrical coordinates:  
∂Vθ VrVθ −1 1 ∂P 2 ∂Vr Vθ

+ (V . ) Vθ + = + ν  2Vθ + − (6.05k)
∂t r ρ r ∂θ r2 ∂θ r2 

in which: 
∂ Vθ ∂ ∂ 

(V . ) =  Vr + + Vz (6.05l)
∂r r ∂θ ∂z 

and   

1 ∂ ∂ 1 ∂2 ∂2
 

 2 = r + + (6.05m) 
r ∂r  ∂r  r2 ∂θ2 ∂z2 

Now if you consider that ∂/∂θ = 0 due to axisymmetry in the problem and also note that Vr = Vz = 0  
then (k) simplifies to   

1 ∂ ∂Vθ Vθ
0 = r − (6.05n)

r ∂r  ∂r  r2 

thus: 
∂2Vθ ∂Vθ2 r + r − Vθ = 0 (6.05o)
∂r2 ∂r 

Note that (o) can be rewritten as:    
d 2 dVθ 2 dVθ 

r − rVθ = 0  ⇒ r − rVθ = const. (6.05p)
dr dr dr 

if we divide (p) by r3 we will then get:   
1 dVθ 1 d Vθ const − Vθ = const/r3 . ⇒ = . (6.05q)
r dr  r2 dr r r3 

thus: 
Vθ c1 c1 

= + c2 ⇒ Vθ = + c2r .  (6.05r) 
r2r r 

in which c1 and c2 are two integration constants which need to be determined from boundary conditions. 
Boundary conditions for this steady problem are: ⎧ ⎫ ⎪ at r = R1 : Vθ = 0  ⎪ ⎪ ⎪ ⎨ ⎬ 

(6.05s) ⎪ ⎪ ⎪ ⎪ ⎩ ⎭ 
at r = R2 : Vθ = R2Ω 

Satisfying the boundary conditions one will get the following values for c1 and c2: 
2
2

2
1 

2
2

2
2 

R R  Ω 
R −R ⎨ ⎬ 

(6.05t) ⎪ ⎪ ⎪ ⎪ 
R Ω 

⎧ ⎫ ⎪c1 = − 2
1 
⎪ ⎪ ⎪ ⎪ ⎪ 

⎪ ⎪ ⎩ ⎭ 
c2 = 2

2R −R 

which leads to the following velocity distribution: 

2Vθ R2r R2R1 = − (6.05u)
R2Ω R2 − R2 (R2 − R2) r2 1 2 1 

Note that at the limit of R1 → 0 the velocity field becomes exactly similar to solid body rotation i.e.,
 
Vθ = rΩ.
 
Now that we have the velocity distribution we can easily calculate τrθ:
 

2μR2
1R

2
2Ω 

τ = μ (dV/dn − V/R) =  μ (dV/dr − V/r) = (6.05v) 
(R2 − R2) r2 

2 1 

2
1 
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Viscous Flows	 A.H. Shapiro and A.A. Sonin 6.05 

thus at r = R2: 
2Ω2μR1τ = (6.05w) 2 − R2)(R2 1

For calculating the required power per unit length (P ) at  r = R2we have: 

P = FshearUwall = 2πR2τwallR2Ω (6.05x) 

Plugging the result from (w) in (x) we will have: 

P 4π 
= (6.05y) 2μω2R2

2 (R2/R1) − 1 

•	 (c) Now in the limit where R2/R1 → 1 we have  R2 = R1 + h ⇒ R2/R1 = 1 +  h/R in which 
R = R1. If we plug this in the relationship for stress (v) we can easily show that at the limit of 
R2/R1 → 1 ⇒ R1 ≈ R2 ≈ R we will have:: 

2μR2
2Ω R1 2μR

2
2Ω μRΩ 

τ = [ ] ≈ ≈	 (6.05z)
2 2h r2 h(1 + h/R) − 1 r2 

Notice that (z) shows that at the limit of R2/R1 → 1 the shear stress is almost constant in the gap and 
its values is very close to what we had in simple plane Couette flow. This fact plus the benefits of circular 
and long geometries are the main ideas for making rheometers out of similar geometries (Taylor-Couette ( )
geometries). Plugging the value from (z) in the relationship for P leads to P/  μω2 R2 = 2πR/h 

D 

Problem Solution by Bavand, Fall 2012 
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