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Problem 6.05 
This problem is from “Advanced Fluid Mechanics Problems” by A.H. Shapiro and A.A. Sonin 
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Figure 1: Geometry of the problem. 

The general definition of the coefficient of viscosity, as applied to two-dimensional motions, is 

τ −µ ≡ (6.05a)
dγ/dt 

where dγ/dt is the rate of change of the angle between two fluid lines which at time t are mutually per
pendicular, the rate of change being measured by an observer sitting on the center of mass of the fluid 
particle. 

• (a) Show that in terms of streamline coordinates, 

τ = µ (dV/dn − V/R) (6.05b) 

where V is the resultant velocity, R is the radius of curvature of the streamline, and n is the outward-
going normal to the streamline. 
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•	 (b) A long, stationary tube of radius R1 is located concentrically inside of a hollow tube of inside radius 
R2, and the latter is rotated at constant angular speed ω. The annulus cottons fluid of viscosity µ. 
Assuming laminar flow, and neglecting end effects, demonstrate that 

P 4π 
=	 (6.05c)2µω2R2

2 (R2/R1) − 1
 

where P is the power required to turn unit length of the hollow tube.
 

•	 (c) Find the special form of (b) as R2/R1 → 1, in terms of the gap width h = R2 − R1 and the radius 
R. 
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