MIT Department of Mechanical Engineering

 2.25 Advanced Fluid Mechanics

 2.25 Advanced Fluid Mechanics}

Problem 6.05

This problem is from "Advanced Fluid Mechanics Problems" by A.H. Shapiro and A.A. Sonin

Figure 1: Geometry of the problem.

The general definition of the coefficient of viscosity, as applied to two-dimensional motions, is

$$
\begin{equation*}
-\mu \equiv \frac{\tau}{d \gamma / d t} \tag{6.05a}
\end{equation*}
$$

where $d \gamma / d t$ is the rate of change of the angle between two fluid lines which at time t are mutually perpendicular, the rate of change being measured by an observer sitting on the center of mass of the fluid particle.

- (a) Show that in terms of streamline coordinates,

$$
\begin{equation*}
\tau=\mu(d V / d n-V / R) \tag{6.05b}
\end{equation*}
$$

where V is the resultant velocity, R is the radius of curvature of the streamline, and n is the outwardgoing normal to the streamline.

- (b) A long, stationary tube of radius R_{1} is located concentrically inside of a hollow tube of inside radius R_{2}, and the latter is rotated at constant angular speed ω. The annulus cottons fluid of viscosity μ. Assuming laminar flow, and neglecting end effects, demonstrate that

$$
\begin{equation*}
\frac{P}{\mu \omega^{2} R_{2}^{2}}=\frac{4 \pi}{(R 2 / R 1)^{2}-1} \tag{6.05c}
\end{equation*}
$$

where P is the power required to turn unit length of the hollow tube.

- (c) Find the special form of (b) as $R_{2} / R_{1} \rightarrow 1$, in terms of the gap width $h=R_{2}-R_{1}$ and the radius R.

MIT OpenCourseWare
http://ocw.mit.edu

2.25 Advanced Fluid Mechanics

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

