
MIT Department of Mechanical Engineering 

2.25 Advanced Fluid Mechanics 

Problem 8.13 
This problem is from “Advanced Fluid Mechanics Problems” by A.H. Shapiro and A.A. Sonin 

Consider a gas bubble of fixed mass and radius R(t) which is expanding or contracting in an infinite sea of 
incompressible liquid. The speed of the interface is dR/dt. The local Eulerian coordinate in the liquid is r. 
Let pR, p, and p∞ be, respectively the pressure at r = R (on the liquid side of the interface), at r = r, and 
at r = ∞. 

(a) Determine the viscous contribution to the normal stress τrr in the liquid. 

(b) Show that the dimensionless overpressure, (pR − p∞)/ρ(dR/dt)2, is independent of whether the fluid 
is viscous or inviscid. 
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Solution:
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τrr

τφφ
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(a) First, we must determine the velocity field in the liquid at any point in time.	 We choose a control 
volume taking the shape of a hollow sphere with inner control surface at radius R(t), which moves 
outward at exactly the rate of expansion of the bubble dR/dt, and outer surface at an arbitrary radius 

4r, such that its volume is V = π(r3 −R(t)3). Using Form A of the integral mass conservation equation, 3   
d 

ρdV + ndA = 0	 (8.13a)ρ(u − uCS) · ˆ
dt CV CS 

we solve for the radial velocity ur at any position r 

R2 dR 
ur =	 (8.13b) 

r2	 dt 

Using Eq. (8.13b) we can determine the average rate of strain from the following equations 

∂ur
γ̇rr = 2	 (8.13c)

∂r 

and   
γ̇θθ = 2

1 
r 

∂uθ 

∂θ 
+ 

ur 

r
(8.13d) 

and   
γ̇φφ = 2

1 
r sin θ 

∂uφ 

∂φ 
+ 

ur 

r 
+ 

uθ cot θ 
r

(8.13e) 

There is no azimuthal or polar velocity in this flow, uθ = uφ = 0, and hence 

γ̇rr = −4
R2 

r3 

dR 
dt 

(8.13f) 
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and

R2 dR
γ̇θθ = 2 (8.13g)

r3 dt

and

R2 dR
γ̇φφ = 2 (8.13h)

r3 dt

For a Newtonian fluid, τij = µγ̇ij , where µ is the dynamic viscosity. Accordingly the normal stresses
for this flow are

R2 dR
τrr = −4µ (8.13i)

r3 dt

and

R2 dR
τθθ = 2µ (8.13j)

r3 dt

and

R2 dR
τφφ = 2µ (8.13k)

r3 dt

(b) The complete equation of motion in the radial direction for spherical coordinates is

(
2 2∂ur ∂ur uθ ∂ur uφ ∂u

ρ + + + r u
r

∂t ∂r r ∂θ r sin θ ∂φ
− θ + uφ

u
r

)
(8.13l)

=

[
1 ∂ 1 + τ ∂p

(r2
∂ 1 ∂τ τ

τrr) + ( φr
τ ) θθ
θr sin + φφ

θ + ρgr (8.13m)
r2 ∂r r sin θ ∂θ r sin θ ∂φ

−
r

]
−
∂r

Neglecting gravity and retaining only the non-zero terms, we have

ρ

(
∂ur ∂u 1 ∂ τ + τ ∂p

+ r (
∂

)
=

r

[
r2τrr) + θθ φφ

ur (8.13n)
∂t r2 ∂r r

]
−
∂r

Substituting Eq. (8.13i), (8.13j) and (8.13k) into Eq. (8.13n) to evaluate the net contribution of viscous
stresses acting on a fluid element, we obtain

ρ

(
∂ur ∂u

+ r
ur

∂t ∂r

)
=

[
4µ ∂ R2 dR R2 dR ∂p− 4µ (8.13o)
r2 ∂r

(
r dt

)
−

r4 dt

]
−
∂r

When we differentiate this term, we find that the net contribution of viscous stresses acting radially
is exactly zero and hence there is no net dissipation associated with this flow. Consequently, the
governing equation is

ρ

(
∂ur ∂u

+ r ∂p
ur + = 0 (8.13p)

∂t ∂r

)
∂r
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Integrating Eq. (8.13p) along dr, which is indeed the streamline coordinate, we obtain the unsteady
Bernoulli equation

ρ

∫ r=∞ ∂u =0 p
r

∞

dr′ ρ u
∂t

∫ ur,∞

+ ′
rdur

′ +
∫

dp′ = 0 (8.13q)
r=R ur= dR pRdt

which is

ρ

∫ 2
r=∞ R2 d2R 1 dR

dr′
r 2

r=
′ dt

− ρ
2

R 2

(
dt

)
+ p∞ − pR = 0 (8.13r)

which gives

( )2
d2R 1 dR

ρR − ρ + p − pR = 0 (8.13s)
dr2 2 dt

∞

which at last yields the final result

p − p 2
2

R d R
R( )∞ dt

2 = ( )22 1
1ρ dR dR

− (8.13t)

2 dt dt

So we have shown that the dimensionless overpressure is indeed independent of whether the fluid is
viscous or inviscid. Note that the dimensionless overpressure can be positive or negative depending on
the rate of change of the surface velocity of the gas bubble.

�

Problem Solution by TJO, Fall 2010
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