MIT Department of Mechanical Engineering 2.25 Advanced Fluid Mechanics

Problem 8.13

This problem is from "Advanced Fluid Mechanics Problems" by A.H. Shapiro and A.A. Sonin

Consider a gas bubble of fixed mass and radius $R(t)$ which is expanding or contracting in an infinite sea of incompressible liquid. The speed of the interface is $d R / d t$. The local Eulerian coordinate in the liquid is r. Let p_{R}, p, and p_{∞} be, respectively the pressure at $r=R$ (on the liquid side of the interface), at $r=r$, and at $r=\infty$.
(a) Determine the viscous contribution to the normal stress $\tau_{r r}$ in the liquid.
(b) Show that the dimensionless overpressure, $\left(p_{R}-p_{\infty}\right) / \rho(d R / d t)^{2}$, is independent of whether the fluid is viscous or inviscid.

MIT OpenCourseWare
http://ocw.mit.edu

2.25 Advanced Fluid Mechanics

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

