MIT Department of Mechanical Engineering 2.25 Advanced Fluid Mechanics

Problem 8.13

This problem is from "Advanced Fluid Mechanics Problems" by A.H. Shapiro and A.A. Sonin

Consider a gas bubble of fixed mass and radius R(t) which is expanding or contracting in an infinite sea of incompressible liquid. The speed of the interface is dR/dt. The local Eulerian coordinate in the liquid is r. Let p_R , p, and p_{∞} be, respectively the pressure at r = R (on the liquid side of the interface), at r = r, and at $r = \infty$.

- (a) Determine the viscous contribution to the normal stress τ_{rr} in the liquid.
- (b) Show that the dimensionless overpressure, $(p_R p_\infty)/\rho (dR/dt)^2$, is independent of whether the fluid is viscous or inviscid.

2.25 Advanced Fluid Mechanics Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.