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2.25 Advanced Fluid Mechanics 

Problem 6.04a 
This problem is from “Advanced Fluid Mechanics Problems” by A.H. Shapiro and A.A. Sonin 

Consider a steady, fully developed laminar flow in an annulus with inside radius R2 and outside radius R1. 

• (a) Find a relation between the pressure gradient dp , the volume flow rate Q, the fluid viscosity µ, R1,dx 

and R2 .R1 

• (b) Fin the limiting form of the relation for a very thin annulus by expressing it in terms of R1 and 
h h, where h = R1 − R2, and taking the limit → 0. Compare with the formula for fully developed R1 R1

laminar flow between parallel flat plates separated by a distance h. 

• (c) In the opposite limit R2 → 0, does the relation of (a) reduce to the formula for Hagen-Poiseuille R1
flow in a circular pipe of radius R1? Discuss your answer. 
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Solution: 

• From the N-S in cylindrical coordinates, the equation can be reduced to 

1 ∂p 1 ∂ 
(

∂vx 
)

0 =  − + r , (6.04aa) 
µ ∂x r ∂r ∂r 

where the first term is approximately a constant across the space between the cylinders (long cylinder 
approximation), then 

1 ∂ 
(

∂vx 
)

0 =  −K + r , (6.04ab) 
r ∂r ∂r 

then, integrating,

2  
∂ 

( 
∂vx 

) 
r ∂vx r C1 ∂vxKrdr = r dr, ⇒ K + C1 = r , ⇒ K + = . (6.04ac)

∂r ∂r 2 ∂r 2 r ∂r
 

Now, integrating again


2 
r C1 

 
∂vx r

(K + )dr = ( )dr, ⇒ K + C1 ln(r) +  C2 = vx, (6.04ad)
2 r ∂r 4
 

Then, applying the boundary conditions,
 

vx(R1) = 0, vx(R2) = 0, (6.04ae) 

the constants can be obtained. Then, 

R2 R2 
1 2K + C1 ln(R1) +  C2 = 0, OR K + C1 ln(R2) +  C2 = 0. (6.04af) 

4 4
 

Now, substracting the solutions to obtain C1,
 

K R1
(R1
2 − R2) +  C1 ln = 0, (6.04ag) 

4 2 R2
 

then,
 

K (R1
2 − R2)4 2C1 = − . (6.04ah)

ln R1 
R2 

Now, re-expressing in terms of the requested variables, 

K K(1 − Φ2) (Φ2 − 1)4 4C1 = −R2 , ⇒ C1 = −R2 , (6.04ai)1 − ln Φ 1 ln Φ 

where, Φ= R2/R1.
 
Now, for C2, we can use any of the two equations,
 

R2 
R2

1C2 = −K − C1 ln(R1), C2 = −K 2 − C1 ln(R2). (6.04aj)
4 4 
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Upon substitution of C1, 

KR2 (R1
2 − R2) K

1 4 2 R2
2 

4 (R
2
1 −R2

2)
C2 = −K + ln(R1), C2 = −K + ln(R2), (6.04ak)4 ln4 ln R1 

R1 
R2R2 

simplifying, 

K 
( 

(R1
2 − R2) 

)
2C2 = − R1

2 + ln(R1) , (6.04al)
4 ln R1 

R2 

K 
( 

(R1
2 − R2) 

)
2C2 = − R2

2 + ln(R2) . (6.04am)
4 ln R1 

R2 

Then the velocity is 

1 dp 
[ 

R1
2 − R2 ( 

r 
)]

2 vx = r 2 − R2
2 − ln (6.04an)

4µ dx ln(R1/R2) R2 

Now, to obtain the flux, let’s integrate this expression, 

2π R1 2π R1 2(
r

)
vxrdrdθ = K + C1 ln(r) +  C2 rdrdθ, (6.04ao) 

0 R2 0 R2 
4 

2π R1 2 R1 3(
r

) (
r

)
K + C1 ln(r) +  C2 rdrdθ = 2π K + C1r ln(r) +  C2r dr (6.04ap) 

0 R2 R2
4 4 

After integration, 

R1 3 2 2 R1(
r

) ( 
Kr4 r r

[ 
1 
])    2π K + C1r ln(r) +  C2r dr = 2π + C2 + C1 ln(r) − , (6.04aq) 

R2 
4 16 2 2 2 R2 

then, finally, 

( 
K(R4

1 − R4) (R2 ) 
[ 

1
] [ 

1 
])

1 − R2 R2 R2 
2 2 1 2Q = 2π + C2 + C1 ln(R1) − − C1 ln(R2) − . (6.04ar)

16 2 2 2 2 2 

Now, substituting C1 and C2, 

πK 
( 

R4 R4 R1
2R2 R2 (R2

2 − R2)2 )
1 2 2 1 1Q = + − − (R1

2 − R2) + (6.04as)22 4 4 2 2 4 ln(R1/R2) 

Now, re-expressing in terms of the requested variables, 

KR2 ( 
1 − Φ2 )

KR2 
( )

1 1C2 = − 1 +  ln(R1) , C2 = − 1 +  Φ
2−1 ln(R1) . (6.04at)4 ln Φ4 − ln Φ 

And simplifying again, 

πKR4 
( 

(Φ2−1)2 
( ) 

+ (Φ
2−1) 

)
Q = 1 1 − 1 (6.04au)2 4 ln Φ 2 
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Problem 6.04b 
This problem is from “Advanced Fluid Mechanics Problems” by A.H. Shapiro and A.A. Sonin 

Solution: 

• Now, factorizing taking into account that R1 = R2 + H, then R2 = R1 − H, 

R1 R1Kπ 
( −2(R1 − H)2R1

2 + (R1 − H)4 ln( ) + (R1 − H)4 − R1
4 ln( ) +  R1

4 )
R1−H R1−HQ = (6.04ba)

8 ln( R1 )R1−H

Now, let’s substitute H using F = H/R1, 
Q = 

R1 R1Kπ 
( −2(R1 − FR1)2R2 + (R1 − FR1)4 ln( ) + (R1 − FR1)4 − R4 ln( ) +  R4 )

1 R1−FR1 1 R1−FR1 1 

8 ln( R1 
R1−FR1 

) 
(6.04bb) 

Now, taking the limit as F → 0, but keeping the higher order terms, 

Q = − 
2 
12 

R4 
1KπF 3 , (6.04bc) 

and substituting the value of K, and the original variables, 

1 dP 
Q = − R1πH3 , (6.04bd)

6µ dx 

( )
Q = − H

3 dP (2πR1), (6.04be)12µ dx 

which corresponds to the solution of a pressure driven flow between two plates separated by a distance 
H, over a length equal to the average circumference of the annulus. 

NOTE: SEE PLOTS OF THE SOLUTIONS USING THE ATTACHED MATLAB FILES, PLAY 
WITH THE SOLUTIONS TILL THE LIMITS MAKE SENSE TO YOU. 
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Problem 6.04c 
This problem is from “Advanced Fluid Mechanics Problems” by A.H. Shapiro and A.A. Sonin 

Solution: 

• Now, taking the limit asΦ → 0 of part a) solution, 

πKR4 ( 
(Φ2 − 1)2 ( 1 

) 
(Φ2 − 1) 

)
1lim Q = lim 1 − + , (6.04ca)

Φ→0 Φ→0 2 4 lnΦ 2 

πKR4
1 

( 
1 −1 

)
lim Q = lim (1) + , (6.04cb)
Φ→0 Φ→0 2 4 2 

πKR4
1lim Q = − , (6.04cc)

Φ→0 8
 
R3 ( 

dP 
)


1lim Q = − (2πR1), (6.04cd)
Φ→0 16µ dx 

which is the solution for Poiseuille flow for a simple tube. You may have guessed that the solution did 
not converge to this value, i.e. the velocity profile had a hole in the center, but this is wrong. The 
solution converges to the simple tube flow because as the inner cylinder becomes smaller, the area that 
it uses to transmit vorticity decreases, and as the area decreases, its influence decreases too (Think of 
a small string (hot wire) inside the tube for measuring flow, and think how small are the disturbances 
that it creates in the flow). 

To further verify that the solution makes physical sense, let’s look at the product r ∗ τviscous to show 
that the viscous force per unit length decreases as r → 0. Using the velocity profile, the viscous stress 
can be obtained, 

dvx 
(

R1
2 − R2

2 1 
)

µ = µK 2r − , (6.04ce)
dr ln(R1/R2) r 

now, let’s evaluate at r = R2, and multiply by R2, 

dvx 
(

R1
2 − R2

2 )
µR2 = µK 2R2

2 − , (6.04cf) 
dr R2 

ln(R1/R2) 

now, taking the limit as R2 → 0, 

dvxlim µR2 = lim µK(2R2) = 0, (6.04cg) 
R2→0 dr R2 

R2→0
2

then, the net viscous force goes to 0 as the radius approaches 0. 

NOTE: SEE PLOTS OF THE SOLUTIONS USING THE ATTACHED MATLAB FILES, PLAY 
WITH THE SOLUTIONS TILL THE LIMITS MAKE SENSE TO YOU. 
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