MIT Department of Mechanical Engineering 2.25 Advanced Fluid Mechanics

Problem 6.04

This problem is from "Advanced Fluid Mechanics Problems" by A.H. Shapiro and A.A. Sonin

Consider a steady, fully developed laminar flow in an annulus with inside radius R_2 and outside radius R_1 .

- (a) Find a relation between the pressure gradient $\frac{dp}{dx}$, the volume flow rate Q, the fluid viscosity μ , R_1 , and $\frac{R_2}{R_1}$.
- (b) Find the limiting form of the relation for a very thin annulus by expressing it in terms of R_1 and $\frac{h}{R_1}$, where $h = R_1 R_2$, and taking the limit $\frac{h}{R_1} \to 0$. Compare with the formula for fully developed laminar flow between parallel flat plates separated by a distance h.
- (c) In the opposite limit $\frac{R_2}{R_1} \to 0$, does the relation of (a) reduce to the formula for Hagen-Poiseuille flow in a circular pipe of radius R_1 ? Discuss your answer.

2.25 Advanced Fluid Mechanics Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.