MIT Department of Mechanical Engineering 2.25 Advanced Fluid Mechanics

Consider a steady, fully developed laminar flow in an annulus with inside radius R_{2} and outside radius R_{1}.

- (a) Find a relation between the pressure gradient $\frac{d p}{d x}$, the volume flow rate Q, the fluid viscosity μ, R_{1}, and $\frac{R_{2}}{R_{1}}$.
- (b) Find the limiting form of the relation for a very thin annulus by expressing it in terms of R_{1} and $\frac{h}{R_{1}}$, where $h=R_{1}-R_{2}$, and taking the limit $\frac{h}{R_{1}} \rightarrow 0$. Compare with the formula for fully developed laminar flow between parallel flat plates separated by a distance h.
- (c) In the opposite limit $\frac{R_{2}}{R_{1}} \rightarrow 0$, does the relation of (a) reduce to the formula for Hagen-Poiseuille flow in a circular pipe of radius R_{1} ? Discuss your answer.

MIT OpenCourseWare
http://ocw.mit.edu

2.25 Advanced Fluid Mechanics

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

