MIT Department of Mechanical Engineering 2.25 Advanced Fluid Mechanics

Problem 7.14

This problem is from "Advanced Fluid Mechanics Problems" by A.H. Shapiro and A.A. Sonin

A fluid of density ρ and viscosity μ flows through a long pipe of diameter D at the volume flow rate Q.
(a) Demonstrate that if the flow is laminar (i.e., totally steady) and fully developed (the velocity profile and the pressure gradient no longer change with downstream distance x), the pressure gradient in the direction of flow must have the form

$$
\frac{d p}{d x}=-K \frac{Q \mu}{D^{4}}
$$

where K is constant.
(b) Demonstrate that if the flow is turbulent (i.e., unsteady) but steady and fully developed in the mean, the mean pressure gradient in the direction of flow must have the form

$$
\frac{d p}{d x}=\left(\frac{\rho Q^{2}}{D^{5}}\right) \cdot \phi\left(\frac{\rho Q}{\mu D}\right)
$$

Solution:

Consider flow through a pipe:

$\frac{d p}{d x}$	Q	D	ρ	μ
$\left[\mathrm{ML}^{-2} \mathrm{~T}^{-2}\right]$	$\left[\mathrm{L}^{3} \mathrm{~T}^{-1}\right]$	$[\mathrm{L}]$	$\left[\mathrm{ML}^{-3}\right]$	$\left[\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right]$

(a) Laminar Case

Steady and fully-developed \Rightarrow INERTIA-FREE and $d p / d x \neq f(\rho)$

$$
\begin{aligned}
& \therefore \frac{d p}{d x}=f_{1}(\mu, Q, D) \\
& n=4 \text { variables } \\
& k=3 \text { primary variables } \\
& \Rightarrow j=1 \text { dimensionless group }
\end{aligned}
$$

Our primary variables must be μ, Q, and D (since there are no other variables)

$$
\begin{gathered}
\Pi=\frac{d p}{d x} \mu^{a} Q^{b} D^{c} \\
{[]=\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]=\left[\mathrm{ML}^{-2} \mathrm{~T}^{-2}\right]\left[\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right]^{a}\left[\mathrm{~L}^{3} \mathrm{~T}^{-1}\right]^{b}[\mathrm{~L}]^{c}} \\
\mathrm{M}^{0}=\mathrm{M}^{1} \mathrm{M}^{\mathrm{a}} \quad \Rightarrow a=-1 \\
\mathrm{~T}^{0}=\mathrm{T}^{-2} \mathrm{~T}^{1} \mathrm{~T}^{-\mathrm{b}} \quad \Rightarrow b=-1 \\
\mathrm{~L}^{0}=\mathrm{L}^{-2} \mathrm{~L}^{1} \mathrm{~L}^{-3} \mathrm{~L}^{\mathrm{c}} \quad \Rightarrow c=4 \\
\Rightarrow \Pi=\frac{d p}{d x} \cdot \frac{D^{4}}{\mu Q}=\mathrm{constant}
\end{gathered}
$$

Keep in mind that $\frac{d p}{d x}$ and Q have opposite signs (i.e., $\frac{d p}{d x}>0$ when $Q<0$ and vice versa). Therefore, define constant $-K$ to ensure that $K \geq 0$.

$$
\Rightarrow \frac{d p}{d x}=-K \frac{\mu Q}{D^{4}}
$$

(b) Turbulent Case

Steady, and fully-developed in the mean

$$
\begin{aligned}
\therefore & \frac{d p}{d x}=f_{2}(\mu, \rho, Q, D) \\
n & =5 \text { variables } \\
k & =3 \text { primary variables } \\
\Rightarrow j & =2 \text { dimensionless groups }
\end{aligned}
$$

For our primary variables, we choose (1) a fluid property: $\rho,(2)$ a flow parameter: Q, and (3) a geometric parameter: D. Follow the same procedure as in part (a) to find

$$
\begin{aligned}
\Pi_{1} & =\frac{d p}{d x} \cdot \frac{D^{5}}{\rho Q^{2}} \\
\Pi_{2} & =\frac{\mu D}{\rho Q}
\end{aligned}
$$

Since $\Pi_{1}=\phi\left(\Pi_{2}\right)$,

$$
\frac{d p}{d x}=\frac{\rho Q^{2}}{D^{5}} \phi\left(\frac{\mu D}{\rho Q}\right)
$$

MIT OpenCourseWare
http://ocw.mit.edu

2.25 Advanced Fluid Mechanics

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

