MIT Department of Mechanical Engineering 2.25 Advanced Fluid Mechanics

Problem 7.03

This problem is from "Advanced Fluid Mechanics Problems" by A.H. Shapiro and A.A. Sonin

A metal ball falls at steady speed in a large tank containing a viscous liquid. The ball falls so slowly that it is known that the inertia forces may be ignored in the equation of motion compared with the viscous forces.

(a) Perform a dimensional analysis of this problem, with the aim of relating the speed of fall V, to the diameter of the ball D, the mass density of the ball ρ_{b}, the mass density of the liquid ρ_{l}, and any other variables which play a role. Note that the "effective weight" of the ball is proportional to $\left(\rho_{b}-\rho_{l}\right) g$.
(b) Suppose that an iron ball (sp. gr. $=7.9, D=0.3 \mathrm{~cm}$) falls through a certain viscous liquid (sp. gr. = $1.5)$ at a certain steady-state speed. What would be the diameter of an aluminum ball (sp. gr. = 2.7) which would fall through the same liquid at the same speed assuming inertial forces are negligible in both flows?

Solution:

(a) Non-dimensional Groups

In steady state, the body force (weight, W) must be balanced with buoyancy $\left(F_{B}\right)$ and drag $\left(F_{D}\right)$ forces.

$$
W_{e f f}=\left(\rho_{b}-\rho_{l}\right) g\left(\frac{4}{3} \pi\left(\frac{D}{2}\right)^{3}\right)=F_{D}
$$

ρ_{l}	μ	V	D	F_{D}
$\left[\mathrm{ML}^{-3}\right]$	$\left[\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right]$	$\left[\mathrm{LT}^{-1}\right]$	$\left[\mathrm{L}^{1}\right]$	$\left[\mathrm{ML}^{1} \mathrm{~T}^{-2}\right]$

Thus we have

$$
\begin{aligned}
n & =5 \text { variables } \\
k & =3 \text { primary variables } \\
\Rightarrow j & =2 \text { dimensionless group }
\end{aligned}
$$

For our primary variables, we choose (1) a fluid property: $\rho_{l},(2)$ a flow parameter: V, and (3) a geometric parameter: D. Therefore, the first dimensionless group is

$$
\mu=f_{1}\left(\rho_{l}, V, D\right) \quad \text { or } \quad \underline{\Pi_{1}=K_{1} \mu \rho_{l}^{a} V^{b} D^{c}}
$$

where K_{1} is a constant. Thus,

$$
\begin{array}{r}
M: 0=1+a \\
L: 0=-1-3 a+b+c \\
T: 0=-1-b \\
\Rightarrow a=b=c=-1 \\
\Pi_{1}=K_{1} \frac{\mu}{\rho_{l} V D}=\frac{K_{1}}{R e} \tag{7.03b}
\end{array}
$$

Similarly, we can obtain the second non-dimensional parameter.

$$
\begin{align*}
& \Pi_{2}=K_{2} F_{D} \rho_{l}^{a} V^{b} D^{c} \\
& \Rightarrow \Pi_{2}=K_{2} \frac{F_{D}}{\rho_{l} V^{2} D^{2}} \tag{7.03c}
\end{align*}
$$

When $K_{2}=2$, this becomes the drag coefficient C_{D}, i.e.,

$$
C_{D}=\frac{F_{D}}{\frac{1}{2} \rho V^{2} A}
$$

where A is a characteristic cross-section area.
(b) Example of Similarity

In part (a), we obtained two non-dimensional variables. In highly viscous flows or fast speed flows, the drag force is a function of the Reynolds number. However, if the speed of the ball is very small $(R e \ll 1)$, then the drag force is no longer a function of Reynolds number.
When the non-dimensional parameters are consistent in two situations, the flow fields are also similar. Let's make the drag coefficients are the same in the two cases.

$$
C_{D}=\frac{\left(\rho_{i}-\rho_{l}\right) g\left(\frac{4}{3} \pi\left(\frac{D_{i}}{2}\right)^{3}\right)}{\rho V^{2} D_{i}^{2}}=\frac{\left(\rho_{a}-\rho_{l}\right) g\left(\frac{4}{3} \pi\left(\frac{D_{a}}{2}\right)^{3}\right)}{\rho V^{2} D_{a}^{2}}
$$

where the subscripts i and a denote the iron and aluminum.

$$
\Rightarrow \frac{(7.9-1.5) \times(0.3)^{3}}{(0.3)^{2}}=\frac{(2.7-1.5) \times D_{a}^{3}}{D_{a}^{2}}
$$

Therefore, the diameter of an aluminum ball which satisfies the similarity is

$$
\begin{equation*}
D_{a}=1.6 \mathrm{~cm} \tag{7.03d}
\end{equation*}
$$

MIT OpenCourseWare
http://ocw.mit.edu

2.25 Advanced Fluid Mechanics

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

