MIT Department of Mechanical Engineering

 2.25 Advanced Fluid Mechanics

 2.25 Advanced Fluid Mechanics}

Problem 7.03
This problem is from "Advanced Fluid Mechanics Problems" by A.H. Shapiro and A.A. Sonin

A metal ball falls at steady speed in a large tank containing a viscous liquid. The ball falls so slowly that it is known that the inertia forces may be ignored in the equation of motion compared with the viscous forces.

(a) Perform a dimensional analysis of this problem, with the aim of relating the speed of fall V, to the diameter of the ball D, the mass density of the ball ρ_{b}, the mass density of the liquid ρ_{l}, and any other variables which play a role. Note that the "effective weight" of the ball is proportional to $\left(\rho_{b}-\rho_{l}\right) g$.
(b) Suppose that an iron ball (sp . gr. $=7.9, D=0.3 \mathrm{~cm}$) falls through a certain viscous liquid (sp . gr. $=$ 1.5) at a certain steady-state speed. What would be the diameter of an aluminum ball (sp . gr. $=2.7$) which would fall through the same liquid at the same speed assuming inertial forces are negligible in both flows?

MIT OpenCourseWare
http://ocw.mit.edu

2.25 Advanced Fluid Mechanics

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

