MIT Department of Mechanical Engineering 2.25 Advanced Fluid Mechanics

Problem 5.18
This problem is from "Advanced Fluid Mechanics Problems" by A.H. Shapiro and A.A. Sonin

$$
P_{\text {atm }}
$$

A flat plate is hinged at one side to the floor, as shown, and held at a small angle $\theta_{0}\left(\theta_{0} \ll 1\right)$ relative to the floor. The entire system is submerged in a liquid of density ρ. At $t=0$, a vertical force is applied and adjusted continually so that it produces a constant rate of decrease of the plate angle θ.

$$
\begin{equation*}
-\frac{d \theta}{d t}=\omega=\text { Const } \tag{5.18a}
\end{equation*}
$$

Assuming that the flow is incompressible and inviscid,
(a) Derive an expression for the velocity $u(x, t)$ at point x and time t.
(b) Find the horizontal force $F(t)$ exerted by the hinge on the floor (assume the plate has negligible mass).

Solution:

(a) Recall from problem 3.5 (Shapiro and Sonin) that mass conservation gives:

$$
\begin{equation*}
u(t)=\frac{x \omega}{2 \theta(t)} \tag{5.18~b}
\end{equation*}
$$

Since ω is a constant, we can write $\theta(t)=\theta_{0}-\omega t$. Hence,

$$
\begin{equation*}
u(t)=\frac{x \omega}{2\left(\theta_{0}-\omega t\right)} \tag{5.18c}
\end{equation*}
$$

(b) Now, we can analyze the wedge using form A of the Conservation of Momentum. Let's consider a triangular, deforming C.V. encompassing the moving wedge and the fluid beneath at all the times, as shown in figure (2).

Then, for the horizontal component

$$
\begin{equation*}
F_{H}=\frac{d}{d t} \int_{C V} V_{x F l u i d} d V+\int_{C S} \rho V_{x F l u i d}\left(\underline{V}_{\text {Rel }} \cdot \underline{\hat{n}}\right) d A \tag{5.18d}
\end{equation*}
$$

$$
\begin{gather*}
F_{H}=\frac{d}{d t} \int_{0}^{L} \int_{0}^{b} \rho U x \tan (\theta) d z d x+\rho\left(\frac{\omega L^{2}}{2 \theta}\right) b L \theta \tag{5.18e}\\
F_{H}=\frac{d}{d t} \int_{0}^{L} \rho \frac{x \omega}{2 \theta} x \tan (\theta) b d x+\rho\left(\frac{\omega L^{2}}{2 \theta}\right) b L \theta \tag{5.18f}
\end{gather*}
$$

Expanding the first term, and simplifying using the small angle approximation, $1 \gg \theta$,

$$
\begin{equation*}
F_{H}=\frac{d}{d t} \int_{0}^{L} \rho \frac{x \omega}{2 \theta} x \tan (\theta) b d x=\frac{d}{d t} \int_{0}^{L} \rho \frac{x \omega}{2} b d x=0 \tag{5.18~g}
\end{equation*}
$$

Where the derivative of the integral is zero because it does not have any time dependence, all the quantities inside the integral are constant (only θ is time dependent, but was cancelled as shown).

Finally, the sum of forces acting on the x direction are zero because outside the C.V. there is only atmospheric pressure, and we have assumed a massless object compressing the fluid. Therefore,

$$
\begin{equation*}
F_{H}=\rho \frac{\omega^{2} L^{3}}{4 \theta} b \tag{5.18~h}
\end{equation*}
$$

Note that we assumed the velocity to be always parallel to the x-axis in this problem. This is a good assumption but not completly true, specially near the plate, where we do have a downward component of the velocity as well. This is partially compensated by having a wall nearly perpendicular to the moving plate.

MIT OpenCourseWare
http://ocw.mit.edu

2.25 Advanced Fluid Mechanics

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

