MIT Department of Mechanical Engineering 2.25 Advanced Fluid Mechanics

Problem 5.33

This problem is from "Advanced Fluid Mechanics Problems" by A.H. Shapiro and A.A. Sonin

At $t=0$, a circular tank of radius R contains water at rest, with a depth h. Between $0<t<\tau$, a water hose is sprayed onto the surface of the water in the tank at a volume flow rate Q and an exit velocity V_{j}. The jet impacts tangentially on the water at a radius R_{j}, with an angle θ relative t the horizontal.

After the time τ, the hose is turned off. Eventually, because of friction within the water, all the water in tank will end up rotating like a solid body.

Derive an expression for the final angular rate of rotation Ω of the water, assuming shear forces between the water and the walls of the tank are negligible.

MIT OpenCourseWare
http://ocw.mit.edu

2.25 Advanced Fluid Mechanics

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

