MIT Department of Mechanical Engineering 2.25 Advanced Fluid Mechanics

Problem 3.05

This problem is from "Advanced Fluid Mechanics Problems" by A.H. Shapiro and A.A. Sonin

A long, flat plate of breadth L (L being small compared with the length perpendicular to the sketch) is hinged at the left side to a flat wall, and the gap betweeen the plate and wall is filled with an incompressible liquid of density ρ. If the plate is at a small angle $\theta(t)$ and is depressed at an angular rate

$$
\omega(t)=-\frac{d \theta}{d t}
$$

obtain an expression for the average liquid speed $u(x, t)$ in the x-direction at station x and time t.

Solution:

Conservation of mass:

$$
\begin{equation*}
\binom{\text { time rate of change }}{\text { of mass in the volume }}=\binom{\text { rate of mass }}{\text { flow in }}-\binom{\text { rate of mass }}{\text { flow out }} \tag{3.05a}
\end{equation*}
$$

If the plate moves $\Delta \theta$ in time, Δt, fluid in the shaded area, must flow out through the control surface (unit depth into the page).

$$
\begin{aligned}
\binom{\text { time rate of change }}{\text { of mass in the volume }} & =\frac{\rho}{2} x(x \underbrace{\tan \Delta \theta}_{\approx \Delta \theta}) \frac{1}{\Delta t}=-\frac{1}{2} x^{2} \omega \rho \\
(\text { rate of mass flow in }) & =0 ; \\
(\text { rate of mass flow out }) & =u_{\mathrm{av}}(x \underbrace{\tan \theta}_{\approx \theta}) \rho
\end{aligned}
$$

From (3.05a)

$$
-\frac{1}{2} x^{2} \omega=0-u_{\mathrm{av}} \theta x \Rightarrow u_{\mathrm{av}}=\frac{x \omega}{2 \theta}
$$

More formally by conservation of mass:

$$
\begin{align*}
& \frac{\partial}{\partial t} \int_{V} \rho d V=-\int_{s} \rho\left(\mathbf{u}-\mathbf{V}_{C V}\right) \cdot \mathbf{n} d s . \tag{3.05b}
\end{align*}
$$

$$
\begin{aligned}
& \int_{\forall} \rho d V=\rho \int_{0}^{x} d x^{\prime} \int_{0}^{x^{\prime} \theta} d y^{\prime}=\frac{1}{2} x(x \theta) \Rightarrow \frac{d}{d t} \int_{\forall} \rho d V=-\frac{1}{2} \rho x^{2} \omega \\
& \int_{(3)}=0, \quad \int_{(2)}=0, \quad \text { b.c. } \mathbf{u}=\mathbf{V}_{C V} \text { (no flux through a solid boundary) } \\
& \int_{(1)}=-\int_{\theta}^{x \theta} \rho \underset{\substack{\uparrow \\
=\mathbf{u} \cdot \mathbf{n}}}{u} d y=\rho x \theta \underbrace{\frac{1}{x \theta} \int_{0}^{x \theta} u d y}_{u_{\mathrm{av}}}
\end{aligned}
$$

Putting this together in (3.05b)

$$
+\frac{1}{2} \not \phi x^{\not 又} \omega=+\phi \not p \theta u_{\mathrm{av}} \Rightarrow u_{\mathrm{av}}=\frac{x \omega}{2 \theta} .
$$

MIT OpenCourseWare
http://ocw.mit.edu

2.25 Advanced Fluid Mechanics

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

