
1  

Fundamental Laws of Motion for Particles, Material Volumes,  
and Control Volumes 
Ain A. Sonin 

Department of Mechanical Engineering
Massachusetts Institute of Technology
Cambridge, MA 02139, USA 

March 2003 © Ain A. Sonin 

Contents 

1 Basic laws for material volumes	 3  

1.1 Material volumes and material particles	 3  
1.2 Laws for material particles	 4  

Mass conservation 4  
Newton’s law of (non-relativistic) linear motion 4  
Newton’s law applied to angular momentum 5  
First law of thermodynamics 5  
Second law of thermodynamics 5  

1.3 Laws for finite material volumes	 6  
Mass conservation 6  
Motion (linear momentum) 6  
Motion (angular momentum) 7  
First law of thermodynamics 7  
Second law of thermodynamics 8  

2 The transformation to control volumes	 9  

2.1 The control volume	 9  
2.2 Rate of change over a volume integral over a control volume 9  
2.3 Rate of change of a volume integral over a material volume 11  
2.4 Reynolds’ material-volume to control-volume transformation 11  

3 Basic laws for control volumes	 13  

3.1 Mass conservation	 13  
3.2 Linear momentum theorem	 14  
3.3 Angular momentum theorem	 14 a 
3.4 First law of thermodynamics	 15  
3.5 Second law of thermodynamics	 16  



2  

4 Procedure for control volume analysis 17  

Appendix 1: Summary of fundamental laws 19  



 

   

  

                                                  

3  

1 Basic laws for material volumes 

1.1 Material volumes and material particles 

Material systems behave according to universal physical laws.  Perhaps the most 
ubiquitous of these are the law of mass conservation, Newton’s laws of motion, and the 
first and second laws of thermodynamics, all of which were understood before the 
nineteenth century ended. In this chapter we review these four laws, starting with their 
most primitive forms, and show how they can be expressed in forms that apply to control 
volumes. These turn out to be very powerful tools in engineering analysis1. 

The most fundamental forms of these four laws are stated in terms of a material 
volume. A material volume contains the same particles of matter at all times2. A 
particular material volume may be defined by the closed bounding surface that envelops 
its material particles at a certain time. Since every point of a material volume’s bounding 

r
surface moves (by definition) with the local material velocity v (Fig. 1), the shape of the 
volume at all other times is determined by the laws of dynamics. 

Fig. 1 A material volume moves with the material particles it encloses. 

1.2 Laws for material particles 

The simplest forms of the four basic laws apply to an infinitesimal material particle 
vthat is so small that the velocity v , density ρ, thermodynamic temperature Τ, and other 

1 For a historical note on control volume analysis in engineering, see Chapter 4 of Walter G. Vincenti’s  
What Engineers Know and How They know It, John Hopkins University Press, 1990. 
2 A material volume is the same as a “closed system” in thermodynamics.  
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intrinsic properties are essentially uniform within it. An observer moving with a particle 
(“sitting on it,” as it were) would see its properties change with time only (Fig. 2). 

Fig. 2 Motion of a material particle between time t and time t+Δt 

vFor a material particle with infinitesimal volume δV(t) , density ρ(t), and velocity v , the 
four laws have the following familiar forms: 

Mass conservation 

d (ρδV ) = 0 (1)
dt 

This law asserts that the mass δM = ρδV of a material particle remains invariant. 
(The prefix δ indicates quantities that are of infinitesimal size, and the prefix d refers to 
changes that occur in the indicated property in time dt.) 

Newton’s law of (non-relativistic) linear motion 

v v d v v 
(ρδV) 

dv 
= δF , or (ρvδV ) = δF (2)

dt dt 

Newton’s law states that, relative to an inertial reference frame3, the product of a v 
particle’s mass and acceleration is at every instant equal to the net force δF(t) exerted on 
it by the rest of the universe, or alternatively, that the rate of change of a particle’s 
momentum (a vector quantity) is equal at every instant to the force applied to the particle 
by the rest of the universe. (Actually the law states that the rate of change of momentum 
is proportional to the applied force, with the coefficient being universal, but in most 

3 An inertial reference frame is one in which the particle would move at a perceptibly constant velocity if 
all the forces acting on it were removed. 
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systems of measurement the universal coefficient is set equal to unity, which determines 
the units of force in terms of those of acceleration and time.) 

Newton’s law applied to angular motion 

d v v v v 
(r × ρvδV) = r × δF (3)

dt 

This law figures in rotary motion. The rate of change of a particle’s angular 
vmomentum (the quantity in brackets on the left side of (3), r (t) being the particle’s 

position vector) is at every instant equal to the net torque exerted on the particle by the 
rest of the universe.  This is not a new law, but one that follows from Eq. (2). Equation 

v(3) is obtained by taking the cross product of r (t) and Eq. (2), using Eq. (1), and noting 
v v v vthat dr dt × v = v × v = 0. Like the law it is derived from, Eq. (3) is valid only in inertial 

reference frames. Actually the law states that the rate of change of momentum is 
proportional to the applied force, with the coefficient being universal, but in most 
systems of measurement the universal coefficient is set equal to unity, which determines 
the units of force in terms of those of acceleration and time. 

First law of thermodynamics 

d(ρetδV ) = δW + δQ (4) 

The increase of a material particle’s total energy in a time interval dt (et is its total 
energy per unit mass, internal plus kinetic plus potential) is equal to the work δW done in 
the interval dt by forces exerted by the rest of the universe on the material volume’s 
boundary (that is, not counting work done by volumetric body forces), plus the heat δQ 
added to the particle at its boundary during this interval. Equation (4) is one part of the 
definition of the quantity we call heat. 

Second law of thermodynamics 

δQ
d(ρsδV) ≥ (5)

T 
The increase of a particle’s entropy (s represents the particle’s entropy per unit mass) 

in a time dt is greater than or equal to the heat added to the particle at its boundary during 
this interval divided by the absolute (thermodynamic) temperature, T .4 The equality sign 
applies in the limit of a reversible process. 

4 According to the Second Law the temperature in Eq. (5) should be that of the “reservoir” from which the 
heat is supplied to the material particle. In this case the heat comes from the material that bounds the 
infinitesimal particle, where the temperature differs infinitesimally from the particle’s own average 
temperature T. 
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1.3  Laws for finite material volumes 

From Eqs (1)-(5), which apply to an infinitesimal material particle, we can derive the 
laws for a finite material volume like the one sketched in Fig. 1. This is accomplished by 
applying a particular law to each of the material particles that comprise the volume under 
consideration, and summing.  In the limit of a continuum, the sum can be viewed as an 
integral over the volume of material properties which are expressed as fields (that is, as 

v
functions of position r and time t ), consistent with the Eulerian way of describing 
material flows. 

The result is the following set of rate equations5 for a material volume’s mass, 
momentum, energy, and entropy: 

Mass conservation 

The mass contained in a material volume remains invariant, 

d v 
ρ(r ,t)dV = 0 , (6)∫dt MV (t ) 

vwhere ρ(r ,t) is the material’s density field, dV=dxdydz represents a volume element 
inside the material volume, and MV(t) under the integral sign signifies integration over 
the material volume at the instant t. 

Motion (linear momentum) 

d v v v 
∫ ρ(r ,t)v v(r ,t)dV = FMV ( t). (7)

dt MV (t ) 

This is Newton’s law of motion: The rate of increase of a material volume's 
momentum, evaluated by integrating the local momentum per unit volume ρv v over the 
material volume, is at every instant equal to the vector sum FMV ( t) of all the forces 
exerted on the material volume by the rest of the universe. This force includes body 
forces acting on the material within the volume and surface forces acting at the boundary, 
but not the forces exerted between the various material particles within the volume, 
which cancel when the sum over all the constituent parts is takenthe action of one 
particle on another is exactly opposed by the reaction of the other on the first. It is 

5 The usual term “conservation equation” is a bit of a misnomer, since mass is the only one of these 
quantities that is actually conserved. 
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understood that Eq. (7) applies only in inertial (non-accelerating) reference frames under 
non-relativistic conditions. 

Motion (angular momentum) 

d v v v 
∫ v v
ρr × v dV = TMV (t) = ∑ ri × Fi (8)

dt iMV ( t ) 

This equation is obtained by summing the angular momentum law for a material 
particle, Eq. (3), over all the particles that comprise a finite material volume. The law 
states that the rate of increase of a material volume’s angular momentum, expressed as 
the integral over the volume of the angular momentum per unit volume, is equal to the 
vector sum TMV (t) of all torques exerted by the rest of the universe on the material 
volume. This form of the law assumes that the torques exerted between two particles 
within the volume are equal and opposite, or zero, which is the case except in rare 
circumstances. Note again that Eq. (8) is not a new law, but a corollary of Newton’s law 
of motion and subject to the same restrictions. 

First law of thermodynamics 

d 
∫ ρetdV = Q̇ 

MS (t) + Ẇ 
MS (t), (9)

dt MV ( t ) 

This law is obtained by summing Eq. (4) over all the particles that comprise the 
material volume and noting that the particle-to-particle heat transfer and work terms 
cancel for all particles inside the material volume when the sum is taken (what comes 
from one goes into the other). 

The law states that the rate of increase of a material volume's energy (et is the total 
energy per unit mass—internal plus kinetic plus gravitational) is equal to the sum of two 
“source terms” which represent interactions with the rest of the universe at the volume’s 
boundary. The first source term is the net heat flow rate into the material volume across 
its bounding surface 

v
Q̇ 

MS (t) = − ∫ q v ⋅ n dA , (10) 
MS(t) 

where 

v q = −k∇T (11) 
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is the conductive heat flux vector at a point on the material volume’s boundary, k isthe 
v

material’s thermal conductivity, T is its local thermodynamic temperature, n is the 
outward-pointing unit vector at the bounding surface, and dA is an elemental area on the 
bounding surface. The symbol MS(t) denotes integration over the closed bounding 
surface of the material volume at time t. The second source term in (9) is the rate at 
which work is done by the rest of the universe on the material volume at its boundary. 
This may be evaluated as 

˙ v vWMS (t) = σ ⋅v dA (12)∫  
MS(t ) 

v v were σ is the vector stress exerted on the boundary by the rest of the universe and v is 
v

the material’s local velocity at dA. The quantity σdA is the force exerted by the rest of 
the universe on the surface element dA of the control volume. 
Equation (9) thus has the form 

d v v v v∫ ρetdV = − ∫ q ⋅ n dA + ∫ σ ⋅v dA (13)
dt MV ( t ) MS(t ) MS( t ) 

Second law of thermodynamics 

q ⋅ vd n dA 
ρsdV ≥ − (14)∫ ∫ 

v 

dt TMV ( t ) MS(t) 

The rate of increase of a material volume’s total entropy is greater than or equal to the 
sum of all the local heat inflows at the boundary when each contribution is divided by the 
local thermodynamic (absolute) temperature at the point on the material volume’s surface 
where the transfer takes place. 

This law provides a bounding value of the rate of entropy increase, but not the actual 
value, and is less useful in dynamics than the other laws. It does, however, have some 
important uses in dynamics. One can for example discard from the dynamically possible 
solutions (those that satisfy mass conservation and the equation of motion) those that are 
unrealizable because they violate the Second Law, and one can predict the entropy 
change in limiting cases of negligible dissipation, where the equality sign applies. 
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2 The transformation to control volumes 

2.1 The control volume 

Equations (6)-(8) and (13)-(14) state universal laws that apply to all material 
distributions. They are, however, in a form that makes them ill suited for applications. 
Each equation contains a term of the form 

d v 
φ(r ,t)dV (15)∫dt MV (t ) 

r
in which a quantity φ(r ,t) that represents something per unit volume—mass, momentum, 
energy, or entropy—is first integrated over a material volume and the result then 
differentiated with respect to time. When the material is flowing and deforming, the 
volume’s boundary moves with it and is not known as a function of time until the 
problem is solved. It seems, therefore, that one must know the solution before one can 
apply these laws to find the solution.  Clearly, we need to find a way of applying the 
basic laws to systems of our own choice, that is, to “control volumes.” 

A control volume is an arbitrarily defined volume with a closed bounding surface (the 
control surface) that separates the universe into two parts: the part contained within the 
control volume, and the rest of the universe. The control surface is a mental construct, 
transparent to all material motion, and may be static in the chosen reference frame, or 
moving and expanding or contracting in any specified manner. The analyst specifies the 

vvvelocity v (r ,t)  at all points of the control surface for all time.c 

We shall show next how the universal laws for a material volume can be rewritten in 
terms of an arbitrarily defined control volume. This opens the way to the application of 
the integral laws in engineering analysis. 

2.2 Rate of change of a volume integral over a control volume 

We begin by considering a time derivative like Eq. (15) for a control volume rather 
than a material volume. The time rate of change of the integral of some field quantity 
φ(

v 
r ,t) over an arbitrarily defined control volume CV(t) is by definition 

φ( v φ(v r ,t + Δt)dV − r ,t)dV∫ ∫ d CV ( t + Δt ) CV ( t)φdV = lim . (16)∫dt Δt→0 ΔtCV( t ) 
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The first integral on the right hand side is evaluated at the advanced time over the 
advanced volume, and the second is evaluated at time t over the volume at time t (Fig. 3). 

v
At any point r we can write for small Δt 

v v ∂φ 
φ(r ,t + Δt ) = φ(r ,t) + Δt . (17)

∂t 

Inserting this into Eq. (15) we see immediately that 

φ(v φ( v r ,t)dV − r,t)dV∫ ∫d ∂φ(r v ,t) CV (t +Δt ) CV ( t)φdV = dV + lim (18)∫ ∫dt ∂t Δt →0 ΔtCV( t ) CV (t ) 

where the integrals on the right are evaluated based on the values of ∂φ/∂t and φ at time t. 
In the limit Δt→0, the difference between the two volume integrals in the second term 
can be evaluated (see Fig. 3) by means of an integral over the material surface at time t: 

v v v v 
∫ φ(r ,t)dV − ∫ φ(r ,t)dV = ∫ φ(r ,t)v v c Δt ⋅ n dA  . (19) 

CV ( t + Δt ) CV (t) CS(t ) 

v v v
Here v (r ,t) is the velocity of the control surface element dA, n is the outwardly-c vvdirected unit normal vector associated with dA, and vc ⋅nΔtdA is the control volume size 
increase in time Δt due to the fact that the surface element dA has moved in that time 
interval. The integral on the right side is taken over the entire (closed) bounding surface 
CS(t) of the control volume. 

Fig. 3 Motion of a control volume between t and t+Δt for small Δt. 
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Substituting Eq. (19) into Eq. (18), we obtain for an arbitrarily chosen control volume 
CV(t), 

d ∂φ(r v ,t ) v v 
∫φdV = ∫ dV + ∫ φ(r ,t)v v c ⋅ n dA (20)

dt ∂tCV( t ) CV (t) CS(t ) 

2.3 Rate of change of a volume integral over a material volume 

The corresponding equation for a material volume MV(t) can be obtained simply by 
noting that a material volume is a control volume every point of which moves with the 
material velocity.   Equation (20) thus applies to a material volume if we set the control 

r
volume velocity equal to the material velocity, v 

r 
= v , and identify the limits of c 

integration with the material volume. This yields for a material volume 

d ∂φ(r v ,t) v v 
∫φdV = ∫ dV + ∫ φ(r ,t)v v ⋅ n dA (21)

dt ∂tMV (t ) MV ( t ) MS( t ) 

2.4 Reynolds' material-volume to control-volume transformation theorem 

Reynolds’ transformation theorem provides a recipe for transforming the fundamental 
laws in Eqs. (6)-(8) and (13)-(14) to control volumes. The transformation theorem is 
obtained by considering a control volume at time t and the material volume which 
coincides with it at that instant.  The control volume CV(t) is chosen arbitrarily by 
defining its closed bounding surface CS(t). The material volume is comprised of all the 
matter inside the control volume at time t (Fig. 4).  The two volumes will of course 
diverge with time since the material volume wafts off with the particles to which it is 
"attached" and the control volume moves according to our specification. This is of no 
consequence since we are considering only a “frozen” instant when the two volumes 
coincide. 

Fig. 4 The control and material volumes in the transformation theorem 
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We apply Eq. (20) to our CV and Eq. (21) to the MV that coincides with it at time t , 
and note that because the volumes coincide, the integrals on the right-hand side of Eq. 
(21) may be evaluated over either the CV instead of the MV. This yields two alternative 
equations for the time derivative of an integral over a material volume, expressed in 
terms of a CV that coincides with the material at the time involved: 

d d r r r
Form A φdV = φdV + φ(v − v ) ⋅ n dA (22)∫ ∫ ∫ cdt dtMV ( t ) CV (t ) CS (t) 

d ∂φ r r
Form B φdV = dV + φv ⋅ n dA (23)∫ ∫ ∫dt ∂tMV( t ) CV ( t) CS (t ) 

Equation (22) is obtained by subtracting Eq. (20) from Eq. (21). Equation (23) is Eq. (21) 
with the integrals referred to the CV instead of the MV, the two being coincident. Recall 

r r
that v is the local material velocity, v is the local control surface velocity at the surface c r
element dA, and n is the outward-pointing unit normal vector associated with dA.. 

Both forms A and B are valid for arbitrarily moving and deforming control volumes 
(i.e. control volumes that may be expanding, translating, accelerating, or whatever), and 
for unsteady as well as steady flows.  The two forms express exactly the same thing, but 
do the bookkeeping in different ways. 

Remember that φ represents something per unit volume. Both forms express the 
material-volume time derivative on the left as a sum of two terms that refer to the control 
volume that coincides with the material volume at the instant t. 

In form A, the first term on the right is the rate of change of the amount of φ inside 
the control volume at time t (the volume integral is evaluated first, then the time 
derivative), and the second term is the net rate of outflow of φ across the control 
volume's boundary. 

In form B, the first term on the right is the volume integral of the partial time 
derivative of φ over the control volume at time t (the CS is held fixed at its position at 
time t while the integration is performed). The second term accounts for the fact that the 
material volume’s boundary, which appears in the integral on the left, does not maintain 
the shape it has at time t, but envelops more volume (and more of the quantity φ ) when it 

vexpands, every point moving with the local material velocity v . The control surface 
velocity does not enter at all in form B. 

We shall see that Form A is usually more convenient in unsteady applications than 
Form B. This is particularly true in cases where ∂φ ∂t is singular at some surface inside 
the control volume (as it is at a moving flame front inside a solid-propellant rocket, for 
example, if φ is the material density distribution in the rocket), in which case it is 
difficult to evaluate the volume integral in Form B. The volume integral in From A, on 
the other hand, can be calculated straightforwardly and then differentiated with respect to 
time. 
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3 Basic laws for control volumes  

The basic physical laws expressed by Eqs (6)-(8) and (13)-(14) in material-volume 
terms are transferred to a control volume as follows. We transform the left sides by 

v vsetting φ  equal to either ρ , ρv v , r × ρv , et , or s, in form A or form B of Reynolds’ 
transformation theorem [ Eqs. (22) and (23)]. The right hand sides are transformed by 
noting that since the MS and CS coincide at the instant being considered (see Fig. 4), the 
force, torque, and heat flow terms on the right hand side of Eqs (7)-(8) and (13)-(14) are 
the same for the CV as for the MV. Note, however, that the rate at which work is being 
done on the CS is not equal to the rate at which work is being done on the MS because 
these surfaces move at different velocities. 

Two alternative forms are obtained for each equation, depending on whether Form A 
[Eq. (22)] or form B [Eq. (23)] of the transformation theorem is used. The alternative 
forms are expressions of the same physical law, stated in somewhat different terms.  Both 
apply to any control volume at every instant in time no matter how the control surface is 
moving and deforming, provided the reference frame is one where the basic equations 
apply. 

We remind the reader (see Fig. 3) that in what follows, 

r r 
vn = v ⋅ n = vcosθ (24) 

is the outward normal component of the material’s absolute velocity at the control 
r r

surface, θ being the angle between v and the outward-pointing normal unit vector n , and 

r r r 
vrn = (v − vc ) ⋅n = vn − vcn (25) 

is the outward normal component of the material's velocity relative to the control surface, 
v  being the outward normal component of the control surface's velocity.cn

3.1 Mass conservation 

Setting φ = ρ  in Eqs. (22) and (23), we transform Eq. (6) into two alternative forms 
for a CV: 

d
Form A ρdV + ρv dA = 0 (26A)∫ ∫ rndt CV( t ) CS(t ) 

Form B 
∂ρ

dV + ρv dA = 0 (26B)∫ ∫ n∂tCV ( t ) CS ( t ) 
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Equation (26A) states the mass conservation principle as follows: The rate of increase 
of the mass contained in the CV, plus the net mass flow rate out through the (generally 
moving) CS, equals zero at every instant. 

Equation (26B) states the same principle in different but equally correct terms: The 
rate of increase of the mass contained in the fixed volume defined by the control surface 
at time t, plus the net mass outflow rate through the fixed bounding surface of that 
volume, equals zero at all times. 

3.2 Linear momentum 

Putting φ = ρv v in Eqs. (22) and (23) and substituting into (7), we obtain the following 
alternative forms for the equation of motion applied to a CV: 

d v v v 
Form A ρvdV + ρv v dA = FCV (t) (27A)∫ ∫ rndt CV(t ) CS (t) 

∂(ρv v ) v v 
Form B dV + ρv v dA = FCV (t) (27B)∫ ∫ n∂tCV ( t ) CS (t ) 

v 
Here, FCV (t) is the vector sum of all the forces exerted at time t by the rest of the universe 
on the control volume, including volumetric forces and stresses exerted on the control 
volume’s boundaries. For a continuous distribution of surface and body forces, 

v v 
FCV (t) = σdA + ρG dV (28)∫ 

v 
∫ 

CS CV 

Equation (27A) states that the rate at which the linear momentum contained in the CV 
increases with time, plus the net flow rate of linear momentum out through the control 
surface, is equal at every instant to the force exerted by the rest of the universe on the 
material within the control surface. 

Equation (27B) states it in different terms: The rate of increase of the momentum 
contained in a “frozen” volume identical to the control surface at time t, plus the net mass 
outflow rate through the “frozen” bounding surface of that volume, is equal at time t to 
the net force exerted by the rest of the universe on the material in the control volume. 

3.3 Angular momentum 

v vSetting φ = ρr × v in either (22) or (23) and substituting into (8) yields the angular 
momentum theorem for a CV in two alternative forms: 
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d v v v v v 
Form A (ρr × v)dV + (ρr × v )v dA = TCV (t) (29A)∫ ∫ rndt CV(t ) CS(t ) 

∂ v v v v v 
Form B ∫ ∂t 

(ρr × v )dV + ∫(ρr × v)vndA = TCV ( t) (29B) 
CV (t ) CS (t ) 

v v 
Here r is the position vector from an arbitrary origin, TCV (t) is the sum of all the torques 
(relative to the chosen origin) that the rest of the universe exerts on the control volume, 
including those resulting from both surface forces (pressure and shear) and volumetric 
body forces (e.g. gravity).  An inertial reference frame is presumed. For a continuous 
distribution of surface and body forces, 

v vv v v
TCV (t) = r ×σdA + ρr × G dV . (30)∫ ∫ 

CS CV 

v
where σ is the vector stress exerted on the boundary element dA by the rest of the v 
universe, and G is the body force exerted by the rest of the universe on unit mass of 
material within the volume. 

Equation (29A) states the following: The rate at which the angular momentum inside 
the control volume increases with time, plus the net rate at which angular momentum 
flows out of the control surface, is equal to the net torque exerted by the rest of the 
universe on the matter in the control volume (on the boundary as well as on the mass 
within). The reader will be able to interpret (29B) based on the comments been made 
above with reference to (26B) and (27B). 

3.4 First law of thermodynamics (energy equation) 

Setting φ = et  in Eqs. (22) and (23) and substituting into (13), we obtain two forms of 
the first law for a CV: 

d v v v vForm A ρetdV + ρetv dA = − q ⋅ n dA + σ ⋅ v dA (31A)∫ ∫ rn ∫ ∫dt CV( t ) CS( t ) CS (t ) CS (t ) 

∂(ρet ) v v v vForm B dV + ρetv dA = − q ⋅ n dA + σ ⋅ v dA (31B)∫ ∫ n ∫ ∫∂tCV ( t ) CS ( t) CS (t ) CS (t ) 

Equation (31A) states that the rate at which the total energy contained in the CV 
increases with time, plus the net rate at which total energy flows out of the CS, is equal to 
the sum of two terms on the right.  The first term is the rate at which heat is conducted 
into the CV via the control surface.  The second is the rate at which the rest of the 
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universe does work on the material volume whose bounding surface coincides with the 
CS at the instant in question. The work done at the control surface, 

r r
Ẇ 

CS (t) = ∫ σ ⋅ vcdA , (32) 
CS(t ) 

depends on the control surface velocity distribution, which is chosen at will by the 
analyst and obviously has no place in a universal law. 

3.5 Second law of thermodynamics 
vd q ⋅n v 

Form A ρsdV + ρsv dA ≥ − dA (33A)∫ ∫ rn ∫dt TCV( t ) CS (t ) CS (t ) 

v v
∂(ρs) q ⋅ n

Form B dV + ρsv dA ≥ − dA (33B)∫ ∫ n ∫∂t TCV ( t ) CS (t ) CS (t ) 

Equation (33A) states that the rate of increase of the entropy contained in the CV (s is 
the entropy per unit mass), plus the net rate of entropy convection out of the control 
surface, never exceeds the integral over the control surface of the normal heat influx 
divided by the local absolute temperature. 
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4 Procedure for control volume analysis  

The application of any one of the integral laws involves consideration of the 
following nine steps: 

Step 1 
Choose the reference frame in which the problem is viewed and velocity and other 

properties are measured.  If Newton’s law is involved in the problem, the reference frame 
must be an inertial (non-accelerating) frame. 

Step 2 
Choose your control volume by specifying its (closed) bounding surface at some 

instant (e.g. t=0) and at all times thereafter. The control surface must be closed. It may be 
multiply connected.  It may move in the chosen reference frame and expand and distort as 
it does so. All this is your choice. If the CS runs parallel to a fluid-solid interface, take 
care to specify whether your control surface is just on the fluid side, or just on the solid 

r
side. It must be on one side or the other, so that quantities like ρ, v , et, etc. have well 
defined values. 

Step 3 
Write down the integral law that you wish to apply. 

Step 4 
v v v vIdentify the values of the properties ( ρ,v, vc ,et ,σ,q , and s, or whichever of them 

figure in your problem) at every element dA of the control surface and calculate the 
surface integrals that appear in your integral equations. Select the control volume so that 
the bounding surface passes as much as possible through regions where you know the 
properties, or can deduce them. Wherever you don’t know some quantities, introduce 
them as unknowns, expecting to determine them as you proceed. 

Step 5 vr
Identify the values of ρ, v , et ,s and G at every volume element dV inside the control 

volume, and evaluate the volume integrals in your integral equations. 

Step 6 
Calculate the time derivative of the volume integral that appears on left-hand side of 

your integral equation. 

Step 7 
From steps 4, 5 and 6, substitute into your integral equations. 
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Step 8 
If you set out to solve a practical problem using the control volume theorems, you 

must write down enough equations to ensure that their number equals the number of 
unknowns in the equations. The four integral laws that we have described are totally 
general and rigorous, but these laws contain more unknowns than equations. You will 
need to draw also on other physical laws, e.g. gravitational theory and/or electromagnetic 
field theory to define the external body force field, and various constitutive equations 
(e.g. the thermodynamic equations of state, the form of the stress tensor, etc.). 

In most applications you will also make simplifying approximations wherever they 
are appropriate. Uniform flow over inlet and exit planes is a typical engineering 
approximation; integral relations by themselves provide no information about velocity 
distributions. If you have reason to believe that the flow may be approximated as 
inviscid, you invoke Bernoulli’s equation6 and when you have obtained your solution 
check that it is consistent with that approximation. If you that density varies little, you 
write ρ = constant and later check that the this approximation is justified, based on the 
fluid’s thermal equation of state and the predicted pressure excursion in your problem. 

Step 9 
Solve for the unknowns 

Step 10 
Check, by suitable order-of-magnitude estimates, that your solution is consistent with 

any approximations that you made. 

6 Bernoulli’s equation is derived from Newton’s law of motion, just like the linear momentum theorem. By 
invoking Bernoulli, we are not simply writing down the same equation twice. The linear momentum 
equation applies generally, to viscous and inviscid flows. By introducing Bernoulli’s equation we add the 
additional constraint that the flow is inviscid. 
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Appendix 1: Summary of Fundamental Laws  

Material particles 

Mass conservation 
d (ρδV ) = 0 
dt 

v v d v v 
Motion (linear momentum) (ρδV) 

dv 
= δF or (ρvδV ) = δF 

dt dt 

d v v v v 
Motion (angular momentum) (r × ρvδV) = r × δF 

dt 

First law of thermodynamics d(ρetδV ) = δW + δQ 

δQ
Second law of thermodynamics d(ρsδV) ≥ 

T 

Material volumes 

d
Mass conservation ρdV = 0∫dt MV ( t ) 

d v v 
Motion (linear momentum) ρv dV = ( t)∫ FMVdt MV ( t ) 

d v v v 
Motion (angular momentum) ρr × v dV = TMV (t )∫dt MV ( t ) 

d
First law of thermodynamics ρetdV = ˙ (t) + ˙ (t)∫ QMS WMSdt MV ( t ) 

q ⋅ vd n dA 
Second law of thermodynamics ρsdV ≥ − ∫ ∫ 

v 

dt TMV ( t ) MS(t) 
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Control volumes 

Reynolds’ theorem 

d ∂φ v v∫ φdV = ∫ dV + ∫ φv ⋅ n dA 
dt ∂tMV (t ) CV ( t ) CS( t ) 

Mass conservation 

d v v v
Form A ρdV + ρ(v − v ) ⋅n dA = 0∫ ∫ cdt CV( t ) CS(t ) 

∂ρ v v
Form B dV + ρv ⋅ n dA = 0∫ ∫∂tCV ( t ) CS ( t ) 

Linear momentum 

d 
∫ v 

∫ v 
rn

v 
Form A ρvdV + ρv v dA = FCV (t)dt CV(t ) CS (t) 

∂(ρv v ) v v 
Form B dV + ρv v dA = FCV (t)∫ ∫ n∂tCV ( t ) CS (t ) 

Angular momentum 

d v v v v v 
Form A ∫(ρr × v)dV + ∫ (ρr × v )vrndA = TCV (t)dt CV(t ) CV (t ) 

∂ v v v v v 
Form B ∫ ∂t 

(ρr × v )dV + ∫(ρr × v)vndA = TCV ( t) 
CV (t ) CS (t ) 

First law 

d v v v vForm A ρetdV + ρetvrndA = − q ⋅ n dA + σ ⋅ v dA ∫ ∫ ∫ ∫dt CV( t ) CS( t ) CS (t ) CS (t ) 

∂(ρet ) v v v vForm B dV + ρetvndA = − q ⋅ n dA + σ ⋅ v dA ∫ ∫ ∫ ∫∂tCV ( t ) CS ( t) CS (t ) CS (t ) 

Second law 

vd q ⋅n v 
Form A ρsdV + ρsv dA ≥ − dA∫ ∫ rn ∫dt TCV( t ) CS (t ) CS (t ) v v

∂(ρs) q ⋅ n
Form B dV + ρsv dA ≥ − dA∫ ∫ n ∫∂t TCV ( t ) CS (t ) CS (t ) 
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 Definition of velocities 

v v = local fluid velocity in an inertial reference frame 
v v = local control surface (CS) velocity in same framec v v v v = v − v =fluid velocity relative to local CSr c v v = outward normal component of vn v v = outward normal component of vrn r 
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