2.23 Hydrofoils \& Propellers

Exam \#1
 March 16, 2007
 1 1/2 Hour - Open Book

Name:

\qquad
Note: For all problems assume fluid density is $1000 \mathrm{~kg} / \mathrm{m} 3$

1) $[15 \mathrm{pts}]$ For the vortex system shown below find the total velocity at point P. (show work).
2) [32 pts] New bow planes are designed to trim an autonomous submarine (one on each side of the hull). The foils are flat each with an elliptical planform area of 0.015 m 2 and a span of 0.25 m . The lift required to trim the hull is 25 N at a vehicle speed of $4 \mathrm{~m} / \mathrm{s}$. If the viscous drag coef. (based on planform area) is 0.008 find:
a) Lift coef. of one foil
b) Estimate the induced drag on both foils
c) Estimate the total drag on both foils
d) If the hull moves at $4 \mathrm{~m} / \mathrm{s}$ find the power required to overcome the drag of the foils.
3) [56 pts]A 4 bladed propeller is placed on a submarine hull and is measured to have the following performance:

Diameter: 5 meter ($\mathrm{R}=2.5 \mathrm{~m}$)
Hub radius: 1 m
Rotational speed: 120 rpm
Ship speed: $10 \mathrm{~m} / \mathrm{s}$
Propeller thrust: 500000 N
a) Compute J, Kt and Ct for this propeller
b) Find the maximum possible efficiency for a propulsor of this size.
c) Estimate the ultimate wake diameter as well as the average axial induced velocity ua* at propeller disk using actuator disk theory.
d) Find the efficiency of an equivalent propeller from Kramer's diagram.
e) Find the efficiency and pitch if the propeller were a B-series 4 bladed propeller (data curves provided).
f) Assuming an actuator disk, estimate the induced velocity on the propeller disk at $\mathrm{r} / \mathrm{R}=0.7$.
g) At $\mathrm{r} / \mathrm{R}=0.7$ the Induced tangential velocity is $u t^{*}=-0.8 \mathrm{~m} / \mathrm{s}$ and the circulation at $\mathrm{r} / \mathrm{R}=0.7$ is $\Gamma=7.0 \mathrm{~m} 2 / \mathrm{s}$ Using the induced axial velocity from part f find: inflow angle β, wake angle $\beta \mathrm{i}$, Draw an accurate velocity diagram at $\mathrm{r} / \mathrm{R}=0.7$.
h) If the chord at $\mathrm{r} / \mathrm{R}=0.7$ is 1 m and the drag coefficient of the section is $\mathrm{Cd}=0.008$ Find the axial force/span and tangential force/span at this radius.

