2.23 Hydrofoils \& Propellers Homework Assignment \#4

Assigned: Monday Mar. 19, 2007

Due: Friday Apr. 6, 2007

1) A two-dimensional section has a parabolic mean line with fmax/ $C=0.08$ and an angle of attack $\alpha=$ ideal angle of attack. Assume rho $=1000 \mathrm{~kg} / \mathrm{m} 3$, Chord $=$ 0.5 m and $\mathrm{Uo}=10 \mathrm{~m} / \mathrm{s}$
a) Find the Lift on the section
b) Find the moment about the leading edge of the foil $\mathrm{x} / \mathrm{C}=-0.5(\mathrm{M}(\mathrm{x})=$ $\left.\rho U o \int x \gamma(x) d x\right)$
c) Find the location of the center of Lift (place about which moment $=0$)
2) A two-dimensional section has a parabolic mean line, and is to develop a lift coefficient of $\mathrm{Cl}=0.25$ at its ideal angle of attack. The foil runs at a cavitation number $\sigma=0.6$.
a) Find the camber height to achieve this lift coef. (at ideal angle of attack).
b) Plot the pressure coefficient on the upper and lower surface (Plot -Cp vs x/C) .
c) Find the maximum angle of attack before the foil cavitates at the quarterchord point ($\mathrm{x}=-\mathrm{c} / 4$)
3) Given a 2 D foil geometry defined as follows:
i. $\quad \mathrm{f}(\mathrm{x}) / \mathrm{c}=0.3(\mathrm{x} / \mathrm{c})^{3}-0.12(\mathrm{x} / \mathrm{c})^{2}-0.18(\mathrm{x} / \mathrm{c})$
ii. Angle of attack $=2$ degrees
iii. Elliptical thickness form $\mathrm{w} /$ to/c $=0.02$ (note: leading edge radius for elliptical thickness is given by $\mathrm{Rl}=0.5\left((\mathrm{to} / \mathrm{c})^{2}\right)$)

Find the following assuming linear foil theory(given $\mathrm{x}=0$ is midchord, $-\mathrm{c} / 2$ is leading edge, $\mathrm{c} / 2$ is the trailing edge:
a) Lift Coefficient Cl
b) Ideal angle of attack
c) u / U on the upper surface at $x=0$ (midchord)
d) q / U at the leading edge (using Lighthill correction)
4) Using linearized 2D foil theory for a foil with the following geometry:
i. Parabolic meanline $\mathrm{fo} / \mathrm{c}=0.07$
ii. Angle of attack $=3$ degrees
iii. Elliptical Thickness to/c $=0.04$
a). Find the Lift coefficient and the value of $\Upsilon(x)$ at $x / c=0.25$
b) Plot CPmin vs x / C and find the location and value of Cpmin on this foil

