2.23 Hydrofoils & Propellers Homework Assignment #3 Assigned: Friday March. 2, 2007 Due: Monday March 9, 2007

1) A system of straight line vortex segments is used to represent a swept wing as shown below. All vortices have the same strength Γ , with directions as shown.

Using your vortex segment function written in the last homework write a matlab code to find the total induced velocity at the three points shown above as a function of wing angle θ . Set $\Gamma = 1$ and S=1 and vary θ from 10 degrees to 60 degrees. Plot the induced velocity at these three points as a function of θ for these three points.

2) A planar foil is to be designed with spanwise circulation distribution as follows:

 $\Gamma(\tilde{y}) = 2Us(a_1\sin(\tilde{y}) + a_3\sin(3\tilde{y}))$

with a1 = 0.05 and a3 varies from 0.02 to -0.02

The span of the foil is 1 meter , the freestream speed U=8m/s and the density of the water is 998 kg/m3. The aspect ratio is 3:1.

- a) Plot $\Gamma(y)$ and w*(y)as a function of y for a3 = 0.02, 0.01, 0, -0.01,-0.02 Note: do not evaluate AT the tips since this may cause numerical trouble.
- b) Plot the total drag on the foil as a function of a3
- c) Plot the total lift on the foil

3) An elliptical foil is to be designed to the following specifications:

- Aspect ratio A = 5.0
- Span = 1 meters
- U = 7 m/s
- Required Lift = 2500N
- Density = 1000 kg/m3
- No camber or twist
- a). Find the overall Lift coefficient for this foil
- b) Using Prandtl's lifting line approximation find the angle of attack of this foil necessary to generate the required lift.
- c) Find the induced drag coefficient and total induced drag
- d) Estimate the total drag if the sectional viscous drag coef. Is Cd=0.008 where:

$$C_{d_{2Dviscous}} = \frac{Drag/span}{1/2\rho U^2 c(y)}$$

- e) Describe qualitatively how the optimum foil shape would change to minimize total drag (including viscous drag). [i.e: how would the circulation loading change]
- 4) A 6 bladed propeller has a thrust coefficient of 0.45 and operates in uniform inflow with no swirl at an advance coefficient of J=0.9 The hub radius is 15% of the tip radius. Hint: pick a Vs=1 and diameter=1 and solve for N and Thrust;.

a) Write a matlab function called HELIX which evaluates the velocity induced on a point on a lifting line due to a helical vortex of an infinite bladed propeller (Eq's. 206 and 207 in the notes). Note this function will require logic to determine if the helix is at a radius larger or smaller than the evaluation point. Use this function to write a code to evaluate the induced velocities at the control points in the second table below given the circulation distribution as follows:

r/R	Γ/Γο
0.15	0
0.25	0.2
0.35	0.4
0.45	0.6
0.55	0.8
0.65	1.0
0.75	0.7
0.85	0.4
0.95	0.1
1.0	0

Also compute the other velocity and angle information listed in the table below.

r/R	ωr/Va	ua*/Va	ut*/va	V*/Va	β	β_i	tan β/tan
							β_i
0.2							
0.3							
0.4							
0.5							
0.6							
0.7							
0.8							
0.9							
0.975							

- b) At r/R=0.7, make an accurate sketch of the velocity diagram similar to figure 89 in the notes) us a chordlength of c/R = 0.1 at r/R=0.7 and assume a sectional drag coefficient of 0.008.
- c) Estimate the efficiency of this propeller using the Kramer diagram. How does this compare with the Betz result at r/R=0.7, $\eta=\tan\beta/\tan\beta_i$? Explain.