13.42 HW #6 Waves Mini-Project

Out: 3/18/04 Due: 4/1/04

<u>Part I:</u> The goal of this exercise is to analyze the Bretschneider spectrum, a continuous spectrum, using Matlab or another computational tool. Using the Bretschneider spectrum given in class:

$$S^{+}(\omega) = \frac{1.25}{4} \frac{\omega_{m}^{4}}{\omega^{5}} \zeta^{2} e^{\left\{-1.25 \left(\frac{\omega_{m}}{\omega}\right)^{4}\right\}}$$

Where the significant wave height is ζ and ω_m is the modal frequency of the spectrum.

- 1. Plot the Bretschneider spectrum for four significant wave heights between 1 and 3 meters for *fully developed seas*.
- 2. Consider one significant wave height chosen in part a.
 - a. Compare the spectrum in part 1 with the JONSWAP spectrum for the same significant wave height.
 - b. Compare the B-S spectrum for developing, fully-developed, decaying sea states. Note that the spectrum shape can be altered by changing the modal frequency.
- 3. Using one case from part a:
 - a. Calculate the moments of the spectrum using numerical integration (like trapezoidal integration or similar)
 - b. Determine the spectrum bandwidth, ε.
 - c. Calculate the 1/Nth highest wave height where N = 10, 50, and 100.

<u>Part II:</u> A ship is being designed to operate in the conditions you have analyzed above. The transfer function between the incoming waves and heave motion (heave transfer function) $H(\omega)$ is given by

$$H(\omega) = \frac{\omega_n^2}{-\omega^2 + 2i\beta\omega_n \,\omega + \omega_n^2}$$

where ω_n is the structure's natural frequency (rad/s) and β is the structural damping ratio.

- a) Plot $|H(\omega)|^2 = H(\omega) \cdot H^*(\omega)$
- b) Determine the spectrum of the heave response. Note that $|H(\omega)|^2 = H(\omega) \cdot H^*(\omega)$. Plot this spectrum. Use a structural damping ratio $\beta = 0.3$ and a $\omega_n = 1.0$ rad/s.
- c) How will the response change if the structural frequency is different illustrate your explanation with plots of the response at a higher or lower natural frequency.