Out: Thursday, 26 February 2004
Due: Thursday, 4 March 2004

1. Probability review problem.

Consider two bags - with 3 green and 4 red marbles in the first, and with 5 green and 1 red marble in the second. A coin is tossed. If the outcome is "heads," then a marble is taken from the first bag. If "tails," then a marble is chosen from the second bag. Suppose that the outcome of the coin toss is such that a green marble is chosen. Find the probability that the marble came from the first bag.
2. Consider the random process

$$
\zeta(t)=A \cos (\omega t+\phi)
$$

where ω and ϕ are constants and A is a random variable with probability density function

$$
p_{A}(a)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{a^{2}}{2 \sigma^{2}}}
$$

Determine whether $\zeta(t)$ is a stationary process.
3. Consider the following LTI system:

$$
U(t) \rightarrow \mathrm{LTI} \rightarrow Y(t)
$$

where $U(t)$ is the input random process and $Y(t)$ is the output random process.
a. Show that $\mu_{Y}(t)=h(t) * \mu_{U}(t)$, where $h(t)$ is the impulse response of the LTI system.
(Hint: Recall that $\left.E[g(X)]=\int_{-\infty}^{\infty} g(x) p_{X}(x) d x.\right)$
b. If the impulse response is given as

$$
h(t)=e^{-a t} S(t)
$$

where a is positive and $S(t)$ is the Heaviside unit step function defined such that $S(t)=1$ when $t>0$ and $S(t)=0$ when $t<0$, find the mean of the response $Y(t)$ if $\mu_{U}(t)=\mu_{0}$.
4. (MATLAB recommended for this problem)

The random wave elevation at a given point in the ocean may be represented as follows:

$$
\zeta(t)=\sum_{i=1}^{N} A_{i} \cos \left(\omega_{i} t+\phi_{i}\right)
$$

where A_{i}, ω_{i}, and ϕ_{i} are the wave amplitude, frequency, and random phase angle (with uniform distribution from 0 to 2π) of wave component number i.

The amplitudes A_{i} corresponding to each frequency ω_{i} may be found from a known wave energy spectrum, $S_{\zeta}(\omega)$, where $S_{\zeta}\left(\omega_{i}\right) \delta \omega=1 / 2 A_{i}$.

Figure 1 - Wave energy spectrum
a. Using the wave energy spectrum given in Figure 1, generate 10 realizations of the random process $\zeta(t)$. Let $t=[0,100]$ seconds. (Hint: Use the MATLAB function rand to generate a realization of the random variable ϕ_{i})
b. Compute the ensemble averages (mean and variance) at $t=20$ seconds, and compute the temporal averages (mean and variance) for each realization. Compare the results.
5. Consider the following LTI system:

$$
X(t) \rightarrow \mathrm{LTI} \rightarrow Y(t)
$$

where $X(t)$ is the input random process and $Y(t)$ is the output random process.
a. If $X(t)$ is stationary, show that

$$
E\left\{[X(t+\tau)-X(t)]^{2}\right\}=2\left[R_{X X}(0)-R_{X X}(\tau)\right]
$$

b. Now given its autocorrelation,

$$
R_{X X}(\tau)=C e^{-k|\tau|}
$$

where $C>0$ and $k>0$, and the impulse response of the system,

$$
h(t)=e^{-a t} S(t)
$$

where $S(t)$ represents the Heaviside unit step function, find the autocorrelation of the response $Y(t)$.
(Hint: Use the Wiener-Khinchine Relations)

