13.42 Design Principles for Ocean Vehicles Homework #2

Out: Thursday, 12 February 2004 Due: Thursday, 19 February 2004

1. Determine whether the following systems are linear and/or time invariant.

a.
$$y(t) = \int_{0}^{t+\alpha} u(s) ds$$

b.
$$y(t) = \int_{t-\alpha}^{t+\alpha} [u(s)]^2 ds$$

c.
$$y(t) = \alpha \frac{du(t)}{dt} \left| \frac{du(t)}{dt} \right|$$

d.
$$\alpha \ddot{y}(t) + \beta \dot{y}(t) + \gamma y(t) = u(t)$$

2. Determine whether the following systems are LTI systems.

a.
$$a_1 \cos \omega t \rightarrow \square \rightarrow a_2 \cos(\omega t + \phi)$$

- b. $\sin 5t \rightarrow \square \rightarrow 2\cos(10t + \pi)$
- 3. Fourier Transform
 - a. Find the Fourier Transform of $f(t) = u_0(t-\tau)$.

b. Given that $f(x) \to 0$ as $|x| \to \infty$, and the Fourier Transform of f(x) is $\tilde{f}(\alpha)$, what is the Fourier Transform of $\frac{df}{dx}$? (Hint: Use partial integration.) c. Given that $\frac{df}{dx} \to 0$ as $|x| \to \infty$, what is the Fourier Transform of $\frac{d^2f}{dx^2}$?

- 4. Transfer Function:
 - a. Given the following linear system:

$$m\ddot{x} + c\dot{x} + kx = f(t)$$

where input $f(t) = \operatorname{Re} \{ \mathbf{F} e^{i\omega t} \}$ and response $x(t) = \operatorname{Re} \{ \mathbf{X} e^{i\omega t} \}$, and **X** and **F** are both complex quantities, find the transfer function $H(\omega)$.

b. Using the same system, for which you have just found the transfer function, if the input is $\alpha f_1(t) + \beta f_2(t)$ determine the system output, x(t).

5. Convolution

Perform the following convolutions (from page 2.11 in Triantafyllou and Chryssostomidis, *Environmental Description, Force Prediction and Statistics for Design Applications in Ocean Engineering*):

6. A linear time-invariant system has a transfer function $H(\omega)$, show that when the input is sinusoidal with frequency ω_o , i.e.

$$f(t) = f_o \cos(\omega_o t + \psi)$$

the output is also a sinusoidal function with the same frequency.