13.42 Design Principles for Ocean Vehicles

Prof. A.H. Techet Spring 2005

1. Gaussian Distribution

Distributions of random variables are often gaussian in shape, or can be approximated as such. The gaussian density function is described by the probability density function

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\bar{x})^2}{2\sigma^2}}$$
(1)

which is symmetric about \overline{x} . Given this pdf the cumulative probability of x is

$$F(x) = \frac{1 + erf\left(\frac{x - \overline{x}}{\sigma}\right)}{2}$$
(2)

where *erf* is the error function:

$$erf(\zeta) = \frac{1}{2\pi} \int_0^{\zeta} e^{-y^2/2} dy$$
 (3)

For an approximately normal function (with Gaussian distribution) then

68% of events fall within 1σ 95% of events fall within 2σ 97.7% of events fall within 3σ

2. Poisson distribution

Discrete events occur randomly in time with the following probability as $\delta t \rightarrow 0$:

$$\begin{cases} \lambda \delta t & \text{to have 1 occurence in time interval } \delta t \\ 1 - \lambda \delta t & \text{to have 0 occurrences in time } \delta t \\ 0 & \text{to have more than one occurence in time } \delta t \end{cases}$$
(4)

Thus the probability to have k occurrences within a finite time t can be shown to be

$$P(k \text{ in } t) = e^{-\lambda t} \frac{(\lambda t)^k}{k!}$$
(5)

This can be useful when designing platforms that require less than k occurrences of an event in a certain time t (e.g. less than ten times water on deck in one day).