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1. STATIONARY AND ERGODIC RANDOM 

PROCESSES 

Given the random process y(z , t)  we assume that the expected value of the random 

process is zero, however this is not always the case. If the expected value equals some 

constant x  we can adjust the random process such that the expected value is indeed zero:o

(y(z , t) = x  t  , z ) - x .o 

Again we note that for the stationary ergodic random process the time statistics and event 

statistics are equal. We write the autocorrelation R( )t : 

1 Ttt {  (  y  t  +t ,z )}  = R (  )  = lim  y t y  (t + t )dt (1)R(  )  = E  y  t  ,z )  (  t 
T fi¥ T �0 i (  )  i 

CORRELATION PROPERTIES 

1. R(0) =  variance = s 2 =  (RMS) 2 ‡ 0 

2. R(  )  = R( )t -t


( )  |
3. R(0)  ‡| R t 

EXAMPLE:  Consider the following random process that is a summation of cosines of 

different frequencies – similar to water waves. 

N 

(  )) (2)y(z ,t) = � a cos(  w t +y zn n n 
n=1 

where y z  are all independent random variables in [0, 2p ] with a uniform pdf. Thisn ( )  
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random process is stationary and ergodic with an expected value of zero. 

The autocorrelation R( )t  is 

N	 2 
nR t(  )  = � a 

cos(  w t  )	 (3)n2n=1 

2. SPECTRUM

Given a random process that is stationary and ergodic, with an expected value of zero and 

autocorrelation R( )t , the power spectral density, or spectrum, of the random process is 

defined as the Fourier transform of the autocorrelation. 

¥ 
w t -iwt dS (  )  = � R( )e t	 (4)

-¥ 

Conversely, the autocorrelation, R( )t , is the inverse FT of the spectrum 

1 ¥ iwtt wR(  )  = �-¥ 
S ( )e dw	 (5)

2p 

Properties of the Spectrum S ( )w  of y(z , t) : 

1.	 S ( )w  is a real and even function. Since R( )t  is real and even. 

¥	 ¥ 
t t	 }dR(  )  e -iwt dt = �-¥ 

R(  ){cos  wt  - i sin  wt t  2.	 �-¥  

3.	 It can be shown that the sine component integrates to zero. 

4.	 The variance of the random process can be found from the spectrum: 

1 ¥2 w w5.	 s = (RMS  )2 = R(0)  = 
2p �-¥ 

S ( )d 

6.	 The spectrum is positive always: S (  ) 0  w ‡ 

7.	 With some restrictions it can also be established that 
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T1 wS (  )  = lim  w (y  t  ,z )e -i t dtkT fi¥ 2p -T 

(Beyond the scope of this course – see Papoulis p. 343 for more info) 

A spectrum covers the range of frequencies from minus infinity to positive infinity 

( -¥  <  w <  +¥ ). 

+ wA one-sided spectrum, S ( )  , is a representation of the entire spectrum only in the 

positive frequency domain. This one-sided spectrum is convenient and used traditionally, 

but is not strictly correct. 

The one sided spectrum is a representation of the entire spectrum only in the positive 
1frequency domain. We “fold" the energy over w = 0 and introduce the 2p factor we get: 

� 2 
w  w  ‡ 0�� S (  )  � 

S + ( )  = � 2p � (9)w 
� 0 else � 

This representation for the one-sided spectrum comes from the variance, R(0) : 

1 ¥ 2 ¥ 
w w  = � S( )dR(0)  = s 2 = �-¥ 

S(  )  d 
2p 

w w  (10)
02p 

©2004, 2005 A. H. Techet 3 Version 3.1, updated 2/24/2005 



13.42 Design Principles for Ocean Vehicles Reading # 

which we can rewrite in terms of the one-sided spectrum 

¥2s = � S ( )d+ w w  (11)
0 

where 

2 
w wS + (  )  = S (  )  ; for  w ‡ 0 (12)

2p 

The spectrum provides a distributed amplitude, or “probability density” of amplitudes, 

indicating the energy of the system. 

3. Application of Spectrum to LTI systems

1. Linear time invariant system

We can use the spectrum to help us analyze linear time invariant systems. Since the LTI 

( ) ( )system is characterized by its impulse response, h t  , given an input, u t  , the output can 

be found from the convolution of the impulse response and the input: 

y  t  (  )  * h t(  )  = u  t  ( )  (13) 
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or the Fourier transform of the output is equal to the Transfer function, H(w), times the FT 

of the input: 

y�(  )  = H ( ) ( )  (14)u�w w w  

( )  is a stationary and ergodic random process then y tFor such a LTI system, if u t ( )  is also 

( )  as Su ( )  and the spectrum of y tstationary and ergodic. Defining the spectrum of u t w ( )

as Sy ( )   we can show that the following holds true: w

2S (  )  =| H (  )  | S ( )w w wy u 

2where H ( )w is square of the magnitude the transfer function of the LTI system. This is 

known as the Wiener-Khinchine Relation. We would like to use this relationship and 

properties of the spectrum to gain insight about the system output, essentially the statistics 

of the output, knowing only the input and the system transfer function. 

4. SHORT TERM STATISTICS

Since we are interested in obtaining the statistics associated with the random processes we 

can use the Spectra to calculate them. 

As an example, lets look at a spectrum, Su ( )  , of sea elevations which consists of manyw

harmonic components. The central limit theorem from probability says, given that there are 

many events, the sea elevation will have a gaussian distribution. If we assume that the input 

function, u t  , is a stationary and ergodic random process with a gaussian pdf, then the the( )

output function, y t( )  is also stationary and ergodic with a gaussian pdf. This assumption is 

good for “short” time intervals, on the order of a storm or an afternoon, but not necessarily 

over weeks or decades. 
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( )  given the spectrum Sy ( ) . TheWe are interested in gathering the statistics of y t w

waveheights, h , and wave periods of interest T  are the random variables in this problem.i i

We have already given that this is a stationary and ergodic random process thus we know 

that the time statistics are equivalent to the event statistics, we can also show that if y t( )  is 

(a realization of the random process y t,z )  (which is stationary and ergodic) then 

(ergodicity says that h  and T  will provide the statistics on y t,z ) and vice versa.i i

Often we need to know how often is a certain level is exceeded by the process, in this case 

the wave height. In order to determine this, we can look at the occurrences of 

UPCROSSINGS only in a certain time period of interest. (There is further information on 

this subject in section 3 of the supplemental notes by Traintafyllou and Chryssotomidis.) 

We can use the moments of the spectrum as follows: 

Zeroth Moment: 

¥ + w w s 2 = VARIANCE (15)M = � S ( )  d = o 0 

Second Moment: 
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¥ 2M 2 = �0 
S ( )  w w 	 (16)+ w d 

Fourth Moment: 

¥ 4M 4 = �0 
S ( )  w w 	 (17)+ w d 

Note, it can be shown that M M3 , etc... are zero (for n odd). 1, 

Lets define h( )  as the average frequency of upcrossings past a certain level A  (crossingsA 

above A  per time) and h(0)  as the average frequency of all upcrossings (past a zero level), 

such that 

A2 
oh( )  = 

1 M 2 e- / 2M	 (18)A 
2p M o 

and 

h(0) =	
1 M 2 . (19)

2p Mo 

We now have an equation for the upcrossing frequency which can be easily determined if 

we know the average period, T . The average period can be thought of here as the expected 

value of all periods, T , such thati

1 � 1 M 2 (20)
T 2p Mo 

and 

oA A2

h( )  = 
1 

e- / 2M (21)
T 
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APPLICATION EXAMPLE: An offshore platform is exposed to a storm with waves of 

standard deviation, s = 2meters  and an average wave period, T = 8sec.  We want to 

design h , the platform height, so that the deck is flooded only once every 10 minutes. Here 

we will neglect diffraction of the waves, thus the incoming waves are not effected by the 

presence of the structure and the magnitude of the transfer function is 1. The input wave 

( )  equals y t  , the wave height at the platform. Following from the previous train u t ( )

lecture we have the relationship between the input spectrum and the output spectrum. 

2w w w 1 wS (  )  =| H (  )  | S (  )  = � Sy ( )  (22)u y 

We want the frequency of upcrossings above the deck height, h , to be one every ten 

minutes: 

1
h(  )  = 

10  min  *60sec  min = 1  600(  times  sec ). (23)h / // 

We also have the equation for the number of upcrossings above height h  as 

h( )  = 
1 - / 2Moh e h2 

(24)
T 

So we can equate these two and solve for h : 

1 h2 

e- / 2Mo 1  600 = /
T 

T h2 

e= - /2 Mo 
600 

8 22M ln ( 600 ) = ho 

5  877 metersh = .  
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This number of times above a level is sufficient for deck wetting frequencies. However for 

structural design calculations where peak stresses are needed to check for structural safety, 

we need to consider the probability of a maximum level, x , reaching a certain designm

level, A . For this it is ideal to define here the bandwidth of the spectrum in terms of the 

moments of the Spectrum. 

4.1. BANDWIDTH OF THE SPECTRUM

The bandwidth of the spectrum describes how “wide” the spectrum is. For a harmonic 

signal with one frequency the bandwidth is nearly zero and a tight spectral peak appears. 

However in a signal that contains multiple frequencies the bandwidth increases. For white 

noise the bandwidth approaches 1. 

Bandwidth is defined as 

1e 2 = -
M 2

2 

(25)
M M  4o 

The value of e  is between 0 and 1. In the ocean, a bandwidth between 0.6 and 0.8 is 

common. 
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4.2. Maxima Above a Level

The probability of a maximum, X , reaching a level A  can be found using the followingm 

pdf: 

A22/ M �� e Ø 1 øo(f x  ) = m 2e11+ - e 2 �� 2p 
EXP 

º
Œ-

2Mo ß
œ 

+ - e 2 A2 

EXP Œ
Ø
- A2 ø Ø � 1 -e 2 A2 �ø� 

(26) 

1 Œ1- -f � �œ 
Mo º 2M o ß

œ
ºŒ �

Ł e oM łßœ��

which holds for any e  where the function f x  is given by( )

u( )  = 
1 x 

e- /2 du. (27)f x  
2p �-¥ 

2 

This can be approximated for very large events x  asm

2 1- e 2 � A � � A2 �
(f x  ) � � � EXP �- � (28)m 

11 + -e 2 �
Ł Mo 

�
ł � 2Mo � 

Note that this approximation is not a true pdf as it does not integrate to one. 

IF e = 0 

A2 

0 Af (x = A) = 
A

e- / 2M o ; < < ¥  (29)m M o 

IF e = 1 

A21 
e- / 2M o ; < < ¥f ( x = A) = 0 A (30)m 2p 

©2004, 2005 A. H. Techet 10 Version 3.1, updated 2/24/2005 



� � 

13.42 Design Principles for Ocean Vehicles Reading # 

Typically the bandwidth of an ocean spectrum is e = .0 6 . 

For most studies of structures and ships we are most interested in the probability that a 

wave height exceeds a certain value. It can be shown that for large values of the wave 

maxima equation 26 reduces to the approximate pdf 

A2 

f ( X = A) » 
2 1- e 2 A

e 
- 2 Mo (31)m 2 M1 + 1 -e o 

This is not a “true” pdf since it will not integrate to 1. However the approximation holds 

over a range bandwidths. It is especially good for values of e  below 0.6 with A M/ o 

/ 0 6greater than 1.4. For larger e  we need larger values of A M . Since e = . is typical ino 

the ocean we can justify this approximation. 

Let’s define some height h = /A M  , where h  is large, and rewrite the approximate pdfo 

as 

h 2f (h =h ) � 2 1  - e 2 

h EXP  {- /2} (32)m 
1+ 1- e 2 

Since we know that a pdf must (technically) integrate to one and that the probability that a 

random variable is below a value A is the integral of the pdf from zero to the height A, then 

we can readily calculate the probability that the wave height is above the level A using the 

pdf given above. The probability that a wave height is above a level a is 

A ¥
( m ) )P  x  ‡ A) =1 - f ( Xm = a  da  = f (X m = a  da (33)

0 A 

For the most part this integral cannot be easily evaluated without using integral tables or 
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numerical integration. 

Using the non-dimensional amplitude, h  which is always greater than 1. Recall:o

A
h	 = > 1	 (34)o M o 

To find the probability that the wave maxima is greater than some amplitude, lets look at 

the probability that the non-dimensional wave amplitude is greater than h :o

ho 
2

P(h ‡h ) = �
¥

f (h = u  du  » 
2 1- e 2 

e- / 2	 (35))o 
1ho 1 +  - e 2 

5. Useful References

•	 Devore, J "Probability and Statistics for Engineering and Sciences" 

•	 Triantafyllou and Chryssostomidis, (1980) "Environment Description, Force 

Prediction and Statistics for Design Applications in Ocean Engineering" Course 

Supplement. 

©2004, 2005 A. H. Techet	 12 Version 3.1, updated 2/24/2005 


