13.42 Design Principles for Ocean Vehicles
 Prof. A.H. Techet
 Spring 2005

1. Random Variables

A random variable is a variable, x, whose value is assigned through a rule and a random experiment, ζ, that assigns a priori a value to the outcome of each experiment, $A_{1}, A_{2}, A_{3}, \ldots$ This rule states that

$$
\begin{gathered}
x\left(A_{1}\right)=x_{1} \\
x\left(A_{2}\right)=x_{2} \\
\ldots \\
x\left(A_{n}\right)=x_{n}
\end{gathered}
$$

One example of a random variable is a Bernoulli random variable which assigns either a 1 or 0 to the outcome. For example, toss a "fair" coin. If it lands heads up you get one dollar, if it land tails up you loose a dollar. The amount won or lost in this case is the random variable.

Symbolically, $x(\zeta)$ denotes the random variable which is a "function" of the random event $\zeta=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ which has associated probabilities: $p\left(A_{1}\right)=p_{1}, p\left(A_{2}\right)=p_{2}$, etc.

$$
\begin{gathered}
A_{1} \longrightarrow x_{1}, p_{1} \\
A_{2} \longrightarrow x_{2}, p_{2} \\
\vdots \\
A_{n} \longrightarrow x_{n}, p_{n}
\end{gathered}
$$

The variables x_{i} are the values of the random variable, A_{i}, the possible events in the event space, and p_{i} is the probability of event A_{i}.

EXPECTED VALUE of the random variable can be thought of as follows: after many (M) repetitions of a random experiment in which event A_{1} occurred d_{1} times, A_{2} occurred d_{2} times, and so on to A_{n} occurred d_{n} times, the total number of experiments is simply

$$
\begin{equation*}
M=d_{1}+d_{2}+d_{3}+\cdots+d_{n} . \tag{19}
\end{equation*}
$$

If a weight, or cost, x_{i}, is assigned to each event, A_{i}, then the total cost of all of the events is

$$
\begin{equation*}
x_{T}=d_{1} x_{1}+d_{2} x_{2}+\cdots+d_{n} x_{n} . \tag{20}
\end{equation*}
$$

Then given p_{i}, the probability of event A_{i}, the expected value of the event is

$$
\begin{equation*}
\bar{x}=E\{X(\zeta)\}=\sum_{i=1}^{N} p_{i} x_{i} . \tag{21}
\end{equation*}
$$

Hence the AVERAGE INCOME per trial is

$$
\begin{equation*}
\bar{x}=\frac{x_{T}}{M} \tag{22}
\end{equation*}
$$

As $m \rightarrow \infty: \frac{d_{i}}{M} \square p_{i}$. In other words the number of occurrences of each event, d_{i}, divided by the total number of events, M, is equal to the probability of the event, p_{i}, and the expected value of x is the average income as defined in 22 as $M \rightarrow \infty$

$$
\begin{equation*}
\bar{x}=x_{1} p_{1}+x_{2} p_{2}+\cdots+x_{n} p_{n} . \tag{23}
\end{equation*}
$$

Expected Value Properties

$$
\begin{gathered}
E\{x+y\}=E\{x\}+E\{y\} \\
E\{C\}=C ; \mathrm{C} \text { is a constant } \\
E\{g(x(\zeta))\}=\sum_{i=1}^{n} g\left(x_{i}\right) p_{i}
\end{gathered}
$$

Properties of Variance

$$
\begin{gathered}
V x \quad=E\left\{[x(\zeta)-\bar{x}]^{2}\right\} \\
=E\left\{x^{2}(\zeta)-2 x(\zeta) \bar{x}+\bar{x}^{-2}\right\} \\
=E\left\{x(\zeta)^{2}\right\}-2 \bar{x} E\{x(\zeta)\}+\bar{x}^{2} \\
=E\left\{x^{2}(\zeta)\right\}-\bar{x}^{2}
\end{gathered}
$$

The Standard deviation is defined as the square root of the variance: $\sigma=\sqrt{V}$.

2. Probability Distribution

Discrete Random Variable: possible values are a finite set of numbers or a countable set of numbers.

Continuous Random Variable: possible values are the entire set or an interval of the real numbers. The probability of an outcome being any specific point is zero (improbable but not impossible).

EXAMPLE: On the first day of school we observe students at the campus bookstore buying computers. The random variable x is zero if a desktop is bought or one if the laptop is bought. If 20% of all buyers purchase laptops then the pmf of x is

$$
\begin{gathered}
p(0)=p(X=0)=\mathrm{p}(\text { next customer buys a desktop })=0.8 \\
p(1)=p(X=1)=\mathrm{p}(\text { next customer buys a laptop })=0.2 \\
p(x)=p(X=x)=0 \text { for } x \neq 0 \text { or } 1 .
\end{gathered}
$$

Probability Density Function (pdf): of a continuous random variable, x, is defined as the probability that x takes a value between x_{o} and $x_{o}+d x$, divided by $d x$, or

$$
\begin{equation*}
f_{x}\left(x_{o}\right)=p\left(x_{o} \leq x<x_{o}+d x\right) / d x . \tag{24}
\end{equation*}
$$

This must satisfy $f_{x}(x) \geq 0$ for all x where $\int_{-\infty}^{\infty} f_{x}(x)=1$ is the area under the entire graph $f_{x}(x)$. It should be noted that a PDF is NOT a probability.

3. Cumulative Distribution Function (CDF)

At some fixed value of x we want the probability that the observed value of x is at most x_{0}. This can be found using the cumulative distribution function, $P(x)$.

Discrete Variables: The cumulative probability of a discrete random variable x_{n} with probability $p(x)$ is defined for all x as

$$
\begin{equation*}
F\left(x \leq x_{k}\right)=\sum_{j=1}^{k} p\left(x_{k}\right) \tag{25}
\end{equation*}
$$

Continuous Variables: The CDF, $F(x)$, of a continuous random variable X with pdf $f_{x}(x)$ is defined for all x as

$$
\begin{equation*}
F_{x}\left(x_{o}\right)=p\left(X \leq x_{o}\right)=\int_{-\infty}^{x_{o}} f_{x}(y) d y \tag{26}
\end{equation*}
$$

which is the area under the probability density curve to the left of value x_{o}. Note that $F\left(x_{o}\right)$ is a probability in contrast to the PDF. Also

$$
\begin{equation*}
F\left(x_{o}\right)=p\left(x \leq x_{o}\right)=\int_{-\infty}^{x_{o}} f_{x}(x) d x \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{x}\left(x_{o}\right)=\frac{d F\left(x_{o}\right)}{d x} . \tag{28}
\end{equation*}
$$

Let x be a continuous random variable with a pdf $f_{x}(x)$ and $\operatorname{cdf} F(x)$ then for any value, a,

$$
\begin{equation*}
p(x>a)=1-F(a) \tag{29}
\end{equation*}
$$

and for any two numbers, a and b,

$$
\begin{equation*}
p(a \leq x \leq b)=F(b)-F(a) \tag{30}
\end{equation*}
$$

Expected Value: The expected value of a continuous random variable, x, with pdf $f_{x}(x)$ is

$$
\begin{equation*}
\mu_{x}=E(x)=\int_{-\infty}^{\infty} x f_{x}(x) d x \tag{31}
\end{equation*}
$$

If x is a continuous random variable with pdf $f_{x}(x)$ and $h(x)$ is any function of that random variable then

$$
\begin{equation*}
E[h(x)]=\mu_{h(x)}=\int_{-\infty}^{\infty} h(x) f_{x}(x) d x \tag{32}
\end{equation*}
$$

Conditional Expectations: The expected value of the random variable given that the variable is greater than some value.

Example:

Variance: The variance of a continuous random variable, x , with pdf $f_{x}(x)$ is

$$
\begin{equation*}
\sigma_{x}^{2}=V\{x\}=E\left\{[x-\bar{x}]^{2}\right\}=\int_{-\infty}^{\infty}\left(x-\mu_{x}\right)^{2} f_{x}(x) d x \tag{33}
\end{equation*}
$$

4. Functions of Random Variables

Given a random variable, $X(\zeta)$ or pdf, $f_{x}(x)$, and a function, $y=g(x)$, we want to find the probability of some y, or the pdf of $\mathrm{y}, f_{y}(y)$.

$$
\begin{equation*}
F\left(X \leq x_{o}\right)=F\left(y(x) \leq g\left(x_{o}\right)\right) \tag{34}
\end{equation*}
$$

The probability that the random variable, X , is less than some value, x_{o}, is the same as the probability that the function $y(x)$ is less than the at function evaluated at x_{0}.

EXAMPLE: Given $y=\alpha x+b$ and the pdf $f_{x}(x)$ for all $\alpha>0$, then $\alpha x+b<y_{o}$ for $x \leq \frac{y_{0}-b}{\alpha}$ and

$$
\begin{equation*}
F\left(y \leq y_{o}\right)=\int_{-\infty}^{\frac{y_{0}-b}{\alpha}} f_{x}(x) d x \tag{35}
\end{equation*}
$$

EXAMPLE: Given $y=x^{3}: F\left(X \leq x_{o}\right)=F\left(y \leq x_{o}^{3}\right)$.
If $y \rightarrow x$ has one solution and pdfs f_{y} and f_{x}

$$
\begin{gather*}
f_{y}|d y|=f_{x}|d x| \tag{36}\\
f_{y}=f_{x} / \frac{|d y|}{|d x|} \tag{37}
\end{gather*}
$$

If $y \rightarrow x_{1}, x_{2}, \cdots, x_{n}$ then

$$
\begin{equation*}
f_{y}=\frac{f_{x}\left(x_{1}\right)}{\left|\frac{d y\left(x_{1}\right)}{d x}\right|}+\cdots+\frac{f_{x}\left(x_{n}\right)}{\left|\frac{d y\left(x_{n}\right)}{d x}\right|} \tag{38}
\end{equation*}
$$

5. Central Limit Theorem

Let $x_{1}, x_{2}, \ldots, x_{n}$ be random samples from an arbitrary distribution with mean, μ, and variance, σ^{2}. If n is sufficiently large, \bar{x} has an approximately normal distribution. So as $n \rightarrow \infty$, if $f_{x}(x)$ can be approximated by a Gaussian distribution. then

$$
\bar{x}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} x_{i}
$$

and

$$
\begin{equation*}
\sigma^{2}(x)=\frac{1}{n} \sum_{i=1}^{n} \sigma_{i}^{2} \tag{40}
\end{equation*}
$$

