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1. Dynamical Systems 

Dynamical systems are representations of physical objects or behaviors such that the 

output of the system depends on present and past values of the input to the system. For 

example: 

t 
y  t  ) = � u t1( )dt1( 

t -3

3 

y  t  (  )  +�n=1 
u  t nd )(  )  = u  t  

N 
( -

In order to model dynamical systems we need to build a set of tools and guidelines that 

can be used to analyze systems such as a ship in waves. This section will introduce tools 

for analyzing linear systems. 

System: Recognize a set of physical objects (behaviors) of interest  

Modeling: Representing the behavior of this system through a set of equations 

that approximate the original physical system.


Inputs: Identify external actions influencing the system behavior. 


Outputs: Identify the outputs of interest.


1.1. Time Invariant System 

Systems are time invariant if their behavior and characteristics do not vary over time. In 

other words, if the input to a system is shifted in time, the resulting output experiences 

an identical time shift. In order to determine whether the system is time invariant, we 

use the following procedure in three steps: 
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Step 1: Replace ( )u t  by (u t  +t )  (Change of 
variables) 

Step 2: Replace ( )y t  by (y t  +t ) (Replace all 
occurrences of t  with t +t ) 

Step 3:	 Are the results from steps 1 and 2 
equal? 

To illustrate this procedure we can use a few simple examples of basic systems with 
( ) ( ) .input, x t  , and output, y t  

( 3 4(	 /Example 1: y  t  ) = [ (  )]3 4  System is clearly time invariant: y t  + t ) = [u t  +t )]( u t  / 

t 
( )dt Check time invariance:Example 2: y  t  ) = � u  t  1 1(

0 

Step (1): Plug in t1 +t for t1  on the RHS and perform a change of variables (let 

= +t ). Note that the limits of integration must also shift with this change of 
variables. 
z t1

t t+t 
(	 z zu  t  1 +t)dt  1 = �t 

u( )d 
0 

Step (2): Plug in t +t for t  on the LHS. Notice that the limits of integration do not 
change in the same fashion as in step 1. The original integral on the RHS is bounded 
from zero to t , and since we are simply replacing all occurrences of t  with t +t we do 
not shift the limits of integration as we did in step 1. 

t +t 
( )dty  t  +t ) = � u  t  1 1(

0 

Step (3): Compare results from steps (1) and (2). They are not equal, therefore this 
system is not time invariant. 

t+t t+t 
u(z z „ u  t  1)d ( )dt1t 0 
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t 4Example 3: y  t  ) = u t1( )dt1( �t -5 

Step (1): Plug in t1 + t for t1  on the RHS and perform a change of variables 

(letz t1= +t ): 
t 

u4 (t +t )dt  = 
t +t 

u 4 ( )dz z�t-5 1 1 � 5t - +t 

Step (2): Plug in t +t for t  on the LHS, and again, note the shift in integration limits: 

t +t 
y  t  +t) = � 5 

u t1 1( 4( )dt 
t- +t 

Step (3): Compare steps (1) and (2). They are equivalent, therefore system is time 
invariant! 

t+t 4� z z = � 5 
u t1 1u 4 (  )  d

t+t 
( )dt 

5t- +  t t- +t 

1.2. Linear Dynamical System 

A subset of dynamical systems is linear dynamical systems. A system is considered to 

be linear if it satisfies properties of linear superposition and scaling. Typically we can 

represent, mathematically, a system with some input, ( ) y t  . Figure 1 x t  , and output, ( )

illustrates typical notation for a linear system, L , where the function x t( ) is input into 

the system, shown as a box, and the system returns the output signal y t  . The arrows( )

indicate whether the function is being input or output from the system. 

Figure 1. Block diagram of linear system with input x t ( ) .( )  and output y t  

In general, given a linear system L , as shown in figure 1, and some input, x t  , the1( )

1 ( ) 2 ( )system would result in an output, y t  , conversely some other input, x t  , into the 

same system would simply yield the output, y t  , such that the inputs and outputs2 ( )

obey the following properties: 
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Linear Superposition: 

( )x (t) + x (  )  �fi  y (t) + y t1 2 t 1 2 

Scaling: 

ax  (t)�fi ay t  ( )1 1 

Superposition and Scaling: 

( )a  x  (  )  + a x  (t) �fi  a  y  (  )  + a  y t  1 1 t 2 2 1 1 t 2 2  

A system must satisfy both the superposition and the scaling criteria for it to be 

considered linear. 

duExample 1: y  t  ( )  = C dt . This system is linear. 

t
Example 2: y  t  ) = � u  t  1( 

0
( )dt . This system is linear. (But it is not time invariant!)1 

( 3 ( )  . This system is not linear. (But it is time invariant!)Example 3: y  t  ) = au t  

1.3. Linear, Time-Invariant (LTI) Systems 

Systems that satisfy both the linear and the time invariant criteria are considered Linear 

Time-invariant, or LTI, systems. The property of superposition makes LTI systems 

easier to analyze. By representing complex inputs as the superposition of basic signals, 

such as an impulse, we can then use superposition to determine the system output. 

1.4. Unit Impulse
We can characterize a time-continuous LTI system by understanding its response to a 

unit impulse. A unit impulse,u t  , otherwise known as the delta function (see fig 2), is o ( )  

an idealization of a pulse which is so short that its duration, d t is inconsequential for 

any real system. 
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e 2Figure 2. Delta (impulse) function with height 1/e  between times - /  and 
e/2 as d t = e goes to zero. 

Any continuous single -valued function, f t  , can be represented as a sum of scaled( )

and time shifted unit impulses: 

�1/e ; | t |£ /2e
( )  = � (1) u to 

� 0; | t |> /2e 

The integral of an impulse from minus infinity to infinity is 1 and u to ( )  is an even 

function: uo (  )  = uo ( )  . Impulses can be scaled, shifted and summed to represent a t - t 

function f t  , see figure 3. ( )

Figure 3. A function f t( )  represented as a sum of scaled and time -shifted impulses. 
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The impulse function has the following properties: 

+¥ 
)u (t  dt = 1 (2) o 

+¥ 
( t )df  t  ) = f (  )  u (t -t t  (3) o 

+¥ 
(  ) ( ) ( )  (4) f t  u t  - a  dt  = f ao 

Let’s take a closer look at equation (4) from above.  Here the value of the constant a is 

set to zero and we see that the integral simply equals that function f(t) evaluated at t=0 . 

+¥ e 
f t  uo ( )  e fi0 �- /2 

f t u t  dt (  )  t  dt =lim + /2 
( ) ( )o�-¥ e 

lim + /2 
= f (0)  �- /  

e 

2 
uo ( )t  dt e fi0 e 

= f (0) 

1.5. Impulse Response of an LTI system 

We can obtain a complete characterization of a continuous-time LTI system in terms of 

its unit impulse response. The impulse response is simply the response of the system to 

a unit impulse input. Since it is possible to characterize a signal, or input, x t  , as a( )

series of scaled impulses, we can also represent the output as a series of scaled and 

shifted impulse responses, given that the system is LTI.  But we’ll get to that in a 

moment. 

For now let’s just look at a simple continuous time LTI system with a impulse 

input,u t  , shown in figure 4.  The output corresponding to the impulse input is the o ( )  

impulse response, h t( ) . Understanding the impulse response will be pivotal in 

determining the behavior of the system to an arbitrary input. 
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Figure 4. The impulse response of a linear time -invariant (LTI) system. 

1.6. Convolution

Given a continuous -time LTI system characterized by an unique impulse response, 

( )h t  , the response of this system to some input, x( )t , at time t =t is simply the input 

weighted by the time-shifted impulse response: x( )  (  t h t  -t ) . 

( )  and output y tFigure 5. Linear system with input x t ( ) . 

y t  , to an input, x t  , we canTherefore, in order to determine the output of the system, ( ) ( )

integrate all possible outputs (responses), x( )  (  t h t  -t ), in the time interval from minus 

infinity to positive infinity: 

+¥ 
( t ( )dy  t  ) = x( )h  t  -t t  (5) 

Thus for any continuous time LTI system, the output y t( )  is a weighted integral of the 

x t  , where the weight on x t (input, ( ) ( ) is h t  -t ) , the time shifted unit impulse response. 

The integral in equation 5 is the convolution integral, which, through a change of 

variables, can also be written as 

+¥ 
( ( ) ( )dhy  t  ) = x  t  -t  t t  . (6) 

Symbolically, we typically represent the convolution integral as 

y  t  (  )  * h t(  )  = x  t  ( ). (7) 
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1.7. Causality

A causal system responds only after being excited (i.e if the input x t( )  is zero before to

therefore the output is also zero before t ). In reality all physical systems are causal. o

Thus the response, ( )y t  , to the input is zero before time t = 0  and we can rewrite the 

convolution integral with integration limited to the interval [ 0 < t <+¥ ]: 
+¥  +¥ 

( t ( )d t h  t  -t t  (8) y  t  ) = �-¥ 
x( )h  t  -t t  = � x( )  (  )d 

0 

Since we are considering dynamical systems that depend only on past and present 

inputs, and that cannot “see” into the future, the response is also bounded by the current 

time, t: 

t 
(

0 
t ( )dy  t  ) = u( )h  t  -t t  (9) 

2. Finding the impulse response of a typical linear system 

Take for example a linear mass-spring-dashpot system as shown in figure 6, which in 

our case could be a floating vessel in heave, where the damping forces is determined 

from viscous damping, the spring constant is the hydrostatic restoring force, the system 

mass is the ship mass plus the ship added mass, and the forcing term, f t  , is the wave( )

forces acting on the floating vessel. 

Figure 6. Mass-spring-dashpot system 
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This system has a lumped mass, m , that moves some distance, x t  ), as a function of(

time. The mass experiences a spring restoring force, f = -kx t  ) , proportional to thes (

spring constant times the distance the mass moves, and a damping term, fd bx t  ) , 

proportional to the damping coefficient times velocity of the mass, and an external 

applied body force, f t  . A simple free body diagram helps illustrate that the sum of ( )

the spring, damping, and applied forces must, by Newton’s second law, equal the 

system mass times the acceleration of the object: 

� F = -bx  t  ) - kx  t  )+ f (t) = mx t  )	 (10) body

Reordering terms we arrive at the classic differential equation for a 

mass-spring-dashpot system. 

mx  t  ) +bx  t  ) + kx  t  ) = f t  )	 (11) 

In order to evaluate the system appropriately, we can use the following steps: 

1. First, we need to identify the initial conditions. In this case, we assume our 

system starts at rest, such that the position and velocity of the mass are zero: 

x(0) 0  = 
x� (0) 0 	

(12) 
= 

t o ( )  , as the input to our2. Next we need to apply an impulsive force, f (  )  = u t  

sys tem, at time 	t = 0, to characterize our system. Thus integrating the system 

t =equation over the duration of the impulse, d e  , yields: 

�
e/2	

�
e/2

{mx  +bx  � + kx  } dt  = { f  t  �� 	 (  )  }dt =1 (13) 
-e/2	 - /2e 

Since e/2  is an infinitesima lly small time interval, before time zero we can 
-e	 ewrite t = - /2 as t = 0 . Following the same logic we can also write t = + /2 

+as t = 0 . Considering the integral in equation 13 and the initial conditions on 

©2004, 2005  A. H. Techet	 9 Version 3.1, updated 2/2/2005 



13.42 Design Principles for Ocean Vehicles Reading #1 

position and velocity, we arrive at 

+ -m {x� (0  )  - x� (0  )  } =1	 (14) 

-The term x�(0 )  is zero since there is no motion before time zero and we are left 

with the velocity just after the force is applied: 

+x� (0 )  = 
1	

(15) 
m 

3.	 For time, t > 0, the initial value problem becomes: 

mx  ��  + bx  � +kx = 0 (16) 

x(0) 0 	 (17)= 

+x� (0 )  = 1 
(18) 

m 

The solution to this initial value problem takes the form 

x  t  1 
s  t  s t1 2( )  = C  e  + C e 	 (19)2 

We can find the constants using the original system equation such that 

ms  + bs k  2 + = 0 

b2 

s -4km 
1 2  = - 2 

b
m 

+ 
2m, -

blet d = 2m and w = k - b2 

m 4m 

= - –  is1 2 d w  . , 

b2Let us assume b < 4km (z = <1), then 
2 km 

x(0)  = C +C2 = 0 fi C = -C21 1 

x� (0)  = C  s  +C  s  2 = C1(s s  ) = 
1 

-1  1 2 1 2 m 
s - = d w  d w  d )+ i d - ( - i1 s2 

1therefore C1 2  = –  2imwd, 
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Thus we can formulate the system response due to the impulsive force input as 

( )  = 
1 { e -d t (eiw d t - e -iw d t )}x  t  

2 i mwd 

iwd t -i t  

Since 	 sin (w t ) = e -e wd 

,d 2i 

the impulse response can be written as 

h t( ) = 1 e -d t sin wd t; t ‡ 0 
mwd 

0; t < 0 

3. Useful References
There are several good texts on signals and systems that give a thorough discussion of 
Linear Time Invariant systems and their properties. A few suggestions are listed below. 

•	 http://www.engin.brown.edu/courses/en4 Course notes on Dynamics and 
Vibrations. 

•	 A.V. Oppenhein, A. S. Willsky, S.H. Nawab (1997) Signals and Systems, 2nd 
ed. Prentice Hall Signal Processing Series, New Jersey. (6.003 Course text 
book) 

•	 Triantafyllou and Chryssostomidis, (1980) "Environment Description, Force 
Prediction and Statistics for Design Applications in Ocean Engineering" 
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