
13.42 Lecture:
Vortex Induced Vibrations

Prof. A. H. Techet
21 April 2005



Offshore Platform
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Fixed Rigs Tension Leg Platforms
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Spar Platforms
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Genesis Spar Platform




Photos of Genesis Spar Oil Platform removed for copyright reasons. 
Please See: http://www.offshore-technology.com/projects/genesis/. 



VIV Catastrophe


If neglected in design, vortex induced vibrations can prove 

catastrophic to structures, as they did in the case of the Tacoma 


Narrows Bridge in 1940.
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John Hancock Building “I n another city, the John Hancock tower wouldn't be anything special -- just another 
reflective glass box in the crowd. But because of the way Boston and the rest of New 
England has grown up architecturally, this "70's modern" building stands out from the 
rest. Instead of being colonial, it breaks new ground. Instead of being quaint, it soars 
and imposes itself on the skyline. And Instead of being white like so many buildings in 
the region, this one defies the local conventional wisdom and goes for black. For these 
reasons and more the people of Boston have fallen in love with the 790-foot monster 
looming as the tallest building in New England at the time of its completion. In the 
mid-1990's, The Boston Globe polled local architects who rated it the city's third best 
architectural structure. Much like Boston's well-loved baseball team, the building has 
had a rough past, but still perseveres, coming back stronger to win the hearts of its 
fans. The trouble began early on. During construction of the foundation the sides of the 
pit collapsed, nearly sucking Trinity Church into the hole. Then in late January, 1973 
construction was still underway when a winter storm rolled into town and a 500-pound 
window leapt from the tower and smashed itself to bits on the ground below. Another 
followed. Then another. Within a few weeks, more than 65 of the building's 10,344 
panes of glass committed suicide, their crystalline essence piling up in a roped-off area 
surrounding the building. The people of Bean Town have always been willing to kick a 
brother when he's down, and started calling the tower the Plywood Palace because of 
the black-painted pieces of wood covering more than an acre of its façade. Some 
people thought the building was swaying too much in the wind, and causing the 
windows to pop out. Some thought the foundation had shifted and it was putting stress 
of the structural geometry. It turns out the culprit was nothing more than the lead 
solder running along the window frame. It was too stiff to deal with the kind of 
vibrations that happen every day in thousands of office buildings around the world. So 
when John Hancock Tower swayed with the wind, or sighed with the temperature, the 
windows didn't and eventually cracked and plummeted to Earth. It cost $7,000,000.00 
to replace all of those panes of glass. The good news is, you can own a genuine piece 
of the skyscraper. According to the Globe, the undamaged sheets were sold off for use 
as tabletops, so start combing those garage sales. For any other skyscraper, the 
hardship would end there. But the Hancock building continued to suffer indignities. 
The last, and most ominous, was revealed by Bruno Thurlimann, a Swiss engineer who 
determined that the building's natural sway period was dangerously close to the period 
of its torsion. The result was that instead of swaying back-and-forth like a in the wind 
like a metronome, it bent in the middle, like a cobra. The solution was putting a pair of 
300-ton tuned mass dampeners on the 58-th floor. The same engineer also determined 
that while the $3,000,000.00 mass dampeners would keep the building from twisting 
itself apart, the force of the wind could still knock it over. So 1,500 tons of steel braces 
were used to stiffen the tower and the Hancock building's final architectural indignity 
was surmounted.” 

Reprinted from http://www.glasssteelandstone.com/BuildingDetail/399.php 

Image removed for copyright reasons.

Courtesy of Artefaqs Corporation. Used with permission.
Source: Glass Steel and Stone, http://www.glasssteelandstone.com.



Classical Vortex Shedding

Von Karman Vortex Street

l h

Alternately shed opposite signed vortices



Potential Flow


U(θ) = 2U∞ sinθ 

2P(θ) = 1/2 ρ U(θ)2 = P∞ + 1/2 ρ U∞ 

Cp = {P(θ) - P ∞}/{1/2 ρ U∞ 
2}= 1 - 4sin2θ 



Axial Pressure Force 


i) Potential flow: 
-π/w < θ < π/2 

ii) P ~ PB 

π/2 ≤ θ ≤  3π/2 
(for LAMINAR flow) 

Base 
pressure 

(i) (ii) 



Wake Instability


Figure removed for copyright reasons.



Shear layer instability causes 

vortex roll-up 

• Flow speed outside wake is much higher than inside 

•	 Vorticity gathers at downcrossing points in upper layer


•	 Vorticity gathers at upcrossings in lower layer 

•	 Induced velocities (due to vortices) causes this 
perturbation to amplify 



Reynolds Number Dependency


Rd < 5

5-15 < Rd < 40

40 < Rd < 150

150 < Rd < 300
Transition to turbulence


300 < Rd < 3*105 

3*105 < Rd < 3.5*106 

3.5*106 < Rd 

Figure by MIT OCW. 

Regime of Unseparated Flow

Regimes of fluid flow across smooth circular cylinders (Lienhard, 1966).

A Fixed Pair of Foppl Vortices 
in Wake

Two Regimes in which Vortex 
Street is Laminar

Transition Range to Turbulence 
in Vortex

Vortex Street is Fully Turbulent

Re-establishment of Turbulent 
Vortex Street

Laminar Boundary Layer has 
Undergone Turbulent Transition 
and Wake is Narrower and 
Disorganized



Vortex shedding dictated by 
the Strouhal number

St=fsd/U
fs is the shedding frequency, d is diameter and U inflow speed



Additional VIV Parameters

• Reynolds Number 

UD effects inertial Re = ≈ 
v effects viscous 

– subcritical (Re<105) (laminar boundary) 

• Reduced Velocity 
U
V = rn D f
n 

• Vortex Shedding Frequency 

SUfs = 
D 

– S≈0.2 for subcritical flow 



Strouhal Number vs. Reynolds 

Number


Graph by MIT OCW.
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Relationship between Strouhal number and Reynolds number for circular cylinders. 
Data from Lienhard (1966) and Achenbach and Heinecke (1981). S~0.21 (1-21/Re)
for 40<Re<200, from Roshko (1955).
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Vortex Shedding Generates 
forces on Cylinder

FD(t)

FL(t)

Uo Both Lift and Drag forces persist 
on a cylinder in cross flow.  Lift 
is perpendicular to the inflow 
velocity and drag is parallel.

Due to the alternating vortex wake (“Karman street”) the 
oscillations in lift force occur at the vortex shedding frequency 
and oscillations in drag force occur at twice the vortex 
shedding frequency.



Vortex Induced Forces


Due to unsteady flow, forces, X(t) and Y(t), vary with time.


Force coefficients: 

D(t)

Cx = 


1/2 ρ U2 d 
L(t)

Cy = 
1/2 ρ U2 d 



Force Time Trace


Cx 

Cy 

DRAG 

LIFT 

Avg. Drag ≠ 0 

0Avg. Lift = 



Alternate Vortex shedding causes 

oscillatory forces which induce 


structural vibrations

Heave Motion z(t) 

z t( )  = z cos  ωt
o 

&( ) = −z ω sin  ωt
z t o 

&&( ) = −z ω cos  ωt
z t 2 
o 

LIFT = L(t) = Lo cos (ω t+ψ)s

Rigid cylinder is now similar DRAG = D(t) = Do cos (2ω t+ ψ)s

to a spring-mass system with ωs = 2π fs


a harmonic forcing term.




“Lock-in”

A cylinder is said to be “locked in” when the frequency of 
oscillation is equal to the frequency of vortex shedding. In this 
region the largest amplitude oscillations occur. 

Shedding ω = 2π fv = 2π St (U/d)
frequency v 

kNatural frequency ωn = m + ma
of oscillation




Equation of Cylinder Heave due 

to Vortex shedding


mz&& + bz& + kz = L t ( )  

m 

z(t) 

L t  &&( )  + L  z  t  ( )  = −L  z  t  &( )a v 

mz t &( )  + kz t && ( )  + L z t &&( )  + bz t ( )  = −  La z t v &( )  k b 

(m L  )&&( )  + (b − L )z  t  ( )  = 0+ z  t  &( )  + k  z  t  a v14243 14243 { 

Added mass term Restoring force 
Damping If Lv > b system is 

UNSTABLE 



Lift Force on a Cylinder

Lift force is sinusoidal component and residual force. Filtering

the recorded lift data will give the sinusoidal term which can 


be subtracted from the total force.


(
LIFT FORCE: L t) = L cos( ωt +ψ ) if ω < ω
o o v 

L t  t sin  ( )  = L cos  ωt cos  ψ − L sin  ω  ψ  o o o o 

−L cos ψ L sin ψo oL t  2 z t  o &( )( )  = o &&( )  + z t  
z ω z ωo o 

where ω is the frequency of vortex shedding
v



Lift Force Components:

Two components of lift can be analyzed: 

Lift in phase with acceleration (added mass):


ω a) = Lo cos  ψ oMa ( ,  2aω 
Lift in-phase with velocity: 

LoL = −  sinψv oaω 
Total lift: 

L t  ω a) &&(( )  = −M ( ,  z  t  ) + L (ω, a) z&(t)a v 

(a = zo is cylinder heave amplitude) 



Total Force:

L t 	 ω a) &&(( )  = −M ( ,  z  t  ) + L (ω, a) z&(t)a	 v 

2 ) ω a) &&(= −( 4 
π ρd C  ( ,  z  t  )
ma 

1 
2 

2
ρdU )CLv ( ,  &(ω a) z t )+	(

•	 If CLv > 0 then the fluid force amplifies the motion 

instead of opposing it. This is self-excited 
oscillation. 

•	 Cma, CLv are dependent on ω and a. 



Coefficient of Lift in Phase with 

Velocity 

Vortex Induced Vibrations are 

SELF LIMITED 

In air: ρair ~ small, zmax ~ 0.2 diameter


In water: ρwater ~ large, zmax ~ 1 diameter




Lift in phase with velocity


Gopalkrishnan (1993)




= 

Amplitude Estimation

Blevins (1990)


a/ 3.35~ 1.29/[1+0.43 SG]
d 
_ _^ 2 2m (2πζ) ; f̂  

n = fn/fs; m = m + ma
*SG=2 π fn
 ρ d2


b
ζ = 

2 k(m+ma 
*) 

*ma = ρ V Cma; where Cma = 1.0 



Drag Amplification

VIV tends to increase the effective drag coefficient.  This increase 

has been investigated experimentally. 

3

2 

1 

Cd |Cd|

0.1 0.2 0.3 

a
d

~ 

Gopalkrishnan (1993) 

= 0.75 

fd

U


Mean drag: Fluctuating Drag: 
~ 

a Cd occurs at twice theCd = 1.2 + 1.1( /d) shedding frequency. 



Single Rigid Cylinder Results


a)	 One-tenth highest 
transverse 
oscillation amplitude 
ratio 

b)	 Mean drag 
coefficient 

c)	 Fluctuating drag 
coefficient 

d)	 Ratio of transverse 
oscillation frequency 
to natural frequency 
of cylinder 

1.0 

1.0 



Flexible Cylinders


t 

Mooring lines and towing 
cables act in similar fashion 
to rigid cylinders except that 
their motion is not spanwise 
uniform. 

Tension in the cable must be considered 

when determining equations of motion




Flexible Cylinder Motion Trajectories


Long flexible cylinders can move in two directions and 
tend to trace a figure-8 motion. The motion is dictated by 
the tension in the cable and the speed of towing. 


