2.20 - Marine Hydrodynamics, Spring 2005 Lecture 10

2.20 - Marine Hydrodynamics Lecture 10

3.7 Governing Equations and Boundary Conditions for P-Flow

3.7.1 Governing Equations for P-Flow

(a) Continuity $\nabla^2 \phi = 0$

(b) Bernoulli for P-Flow (steady or unsteady) $| p \rangle$

$$= -\rho\left(\phi_t + \frac{1}{2}|\nabla\phi|^2 + gy\right) + C(t)$$

3.7.2 Boundary Conditions for P-Flow

Types of Boundary Conditions:

- (c) Kinematic Boundary Conditions specify the flow velocity \vec{v} at boundaries. $\left| \frac{\partial \phi}{\partial n} = U_n \right|$
- (d) Dynamic Boundary Conditions specify force \vec{F} or pressure p at flow boundary.

 $p = -\rho \left(\phi_t + \frac{1}{2} \left(\nabla\phi\right)^2 + gy\right) + C\left(t\right) \text{ (prescribed)}$

The boundary conditions in more detail:

• Kinematic Boundary Condition on an impermeable boundary (no flux condition)

• Dynamic Boundary Condition: In general, pressure is prescribed

$$p = -\rho\left(\phi_t + \frac{1}{2}\left(\nabla\phi\right)^2 + gy\right) + C\left(t\right) = \text{Given}$$

3.7.3 Summary: Boundary Value Problem for P-Flow

The aforementioned governing equations with the boundary conditions formulate the Boundary Value Problem (BVP) for P-Flow.

The general BVP for P-Flow is sketched in the following figure.

It must be pointed out that this BVP is satisfied **instantaneously**.

3.8 Linear Superposition for Potential Flow

In the **absence** of **dynamic boundary conditions**, the potential flow boundary value problem is **linear**.

• Potential function ϕ .

• Stream function ψ .

Linear Superposition: if ϕ_1, ϕ_2, \ldots are harmonic functions, i.e., $\nabla^2 \phi_i = 0$, then $\phi = \sum \alpha_i \phi_i$, where α_i are constants, are also harmonic, and is the solution for the boundary value problem provided the kinematic boundary conditions are satisfied, i.e.,

$$\frac{\partial \phi}{\partial n} = \frac{\partial}{\partial n} \left(\alpha_1 \phi_1 + \alpha_2 \phi_2 + \ldots \right) = U_n \text{ on } B.$$

The key is to combine known solution of the Laplace equation in such a way as to satisfy the kinematic boundary conditions (KBC).

The same is true for the stream function ψ . The K.B.C specify the value of ψ on the boundaries.

3.8.1 Example

Let $\phi_i(\vec{x})$ denote a unit-source flow with source at \vec{x}_i , i.e.,

$$\phi_i\left(\vec{x}\right) \equiv \phi_{\text{source}}\left(\vec{x}, \vec{x}_i\right) = \frac{1}{2\pi} \ln\left|\vec{x} - \vec{x}_i\right| \quad \text{(in 2D)}$$
$$= -\left(4\pi \left|\vec{x} - \vec{x}_i\right|\right)^{-1} \text{(in 3D)},$$

then find m_i such that

$$\phi = \sum_{i} m_i \phi_i(\vec{x})$$
 satisfies KBC on B

Caution: ϕ must be regular for $x \in V$, so it is required that $\vec{x} \notin V$.

Figure 1: Note: $\vec{x}_j, j = 1, ..., 4$ are *not* in the fluid domain V.

3.9 - Laplace equation in different coordinate systems (cf Hildebrand §6.18)
3.9.1 Cartesian (x,y,z)

3.9.2 Cylindrical $(\mathbf{r}, \theta, \mathbf{z})$

$$\begin{aligned} r^2 &= x^2 + y^2, \\ \theta &= \tan^{-1}(y/x) \end{aligned}$$
$$\vec{v} &= \left(\frac{\hat{e}_r}{\hat{v}_r}, \frac{\hat{e}_\theta}{\hat{v}_\theta}, \frac{\hat{e}_z}{\hat{v}_z}\right) = \left(\frac{\partial\phi}{\partial r}, \frac{1}{r}\frac{\partial\phi}{\partial \theta}, \frac{\partial\phi}{\partial z}\right) \end{aligned}$$
$$\nabla^2 \phi &= \frac{\partial^2 \phi}{\frac{\partial r^2}{\partial r}} + \frac{1}{r}\frac{\partial\phi}{\partial r}} + \frac{1}{r^2}\frac{\partial^2 \phi}{\partial \theta^2} + \frac{\partial^2 \phi}{\partial z^2} \Leftrightarrow \end{aligned}$$
$$\nabla^2 \phi &= \frac{1}{r}\frac{\partial\phi}{\partial r}\left(r\frac{\partial\phi}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 \phi}{\partial \theta^2} + \frac{\partial^2 \phi}{\partial z^2} \end{aligned}$$

3.9.3 Spherical $(\mathbf{r}, \theta, \varphi)$

$$r^{2} = x^{2} + y^{2} + z^{2},$$

$$\theta = \cos^{-1}(z/r) \Leftrightarrow z = r(\cos\theta)$$

$$\varphi = \tan^{-1}(y/x)$$

$$\vec{v} = \nabla\phi = \begin{pmatrix} \hat{e}_r & \hat{e}_\theta & \hat{e}_\varphi \\ v_r, v_\theta, v_\varphi \end{pmatrix} = \begin{pmatrix} \frac{\partial\phi}{\partial r}, \frac{1}{r}\frac{\partial\phi}{\partial \theta}, \frac{1}{r(\sin\theta)}\frac{\partial\phi}{\partial\varphi} \end{pmatrix}$$

$$\nabla^2 \phi = \frac{\partial^2 \phi}{\partial r^2} + \frac{2}{r} \frac{\partial \phi}{\partial r} + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \phi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \phi}{\partial \varphi^2} \Leftrightarrow$$
$$\nabla^2 \phi = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \phi}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \phi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \phi}{\partial \varphi^2}$$

3.10 Simple Potential flows

1. <u>Uniform Stream</u> $\nabla^2(ax + by + cz + d) = 0$

1D:	$\phi = Ux + \text{ constant } \psi = Uy + \text{ constant};$	$\vec{v} = (U, 0, 0)$
2D:	$\phi = Ux + Vy + \text{ constant } \psi = Uy - Vx + \text{ constant};$	$\vec{v} = (U, V, 0)$
3D:	$\phi = Ux + Vy + Wz + \text{ constant}$	$\vec{v} = (U, V, W)$

2. Source (sink) flow

2D, Polar coordinates

$$\nabla^2 = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2}, \text{ with } r = \sqrt{x^2 + y^2}$$

An axisymmetric solution: $\phi = a \ln r + b$. Verify that it satisfies $\nabla^2 \phi = 0$, except at $r = \sqrt{x^2 + y^2} = 0$. Therefor, r = 0 must be excluded from the flow.

Define 2D source of strength m at r = 0:

$$\phi = \frac{m}{2\pi} \ln r$$

$$\nabla \phi = \frac{\partial \phi}{\partial r} \hat{e}_r = \frac{m}{2\pi r} \hat{e}_r \iff v_r = \frac{m}{2\pi r}, \ v_\theta = 0$$

Net outward volume flux is

If $m < 0 \Rightarrow$ sink. Source m at (x_0, y_0) :

$$\phi = \frac{m}{2\pi} \ln \sqrt{(x - x_0)^2 + (y - y_0)^2}$$

$$\phi = \frac{m}{2\pi} \ln r \text{ (Potential function)} \iff \psi = \frac{m}{2\pi} \theta \text{ (Stream function)}$$

3D: Spherical coordinates

$$\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \left(\frac{\partial}{\partial \theta}, \frac{\partial}{\partial \varphi}, \cdots \right), \text{ where } r = \sqrt{x^2 + y^2 + z^2}$$

A spherically symmetric solution: $\phi = \frac{a}{r} + b$. Verify $\nabla^2 \phi = 0$ except at r = 0.

Define a 3D source of strength m at r = 0. Then

$$\phi = -\frac{m}{4\pi r} \iff v_r = \frac{\partial \phi}{\partial r} = \frac{m}{4\pi r^2}, \ v_\theta = 0, \ v_\varphi = 0$$

Net outward volume flux is

$$\oint v_r dS = 4\pi r_{\varepsilon}^2 \cdot \frac{m}{4\pi r_{\varepsilon}^2} = m \ (m < 0 \ \text{for a sink} \)$$

3. 2D point vortex

$$\nabla^2 = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2}$$

Another particular solution: $\phi = a\theta + b$. Verify that $\nabla^2 \phi = 0$ except at r = 0.

Define the potential for a point vortex of circulation Γ at r = 0. Then

$$\phi = \frac{\Gamma}{2\pi}\theta \iff v_r = \frac{\partial\phi}{\partial r} = 0, \ v_\theta = \frac{1}{r}\frac{\partial\phi}{\partial\theta} = \frac{\Gamma}{2\pi r} \text{ and,}$$
$$\omega_z = \frac{1}{r}\frac{\partial}{\partial r}(rv_\theta) = 0 \text{ except at } r = 0$$

Stream function:

$$\psi = -\frac{\Gamma}{2\pi}\ln r$$

Circulation:

$$\int_{C_1} \vec{v} \cdot d\vec{x} = \int_{C_2} \vec{v} \cdot d\vec{x} + \int_{C_1 - C_2} \vec{v} \cdot d\vec{x} = \int_0^{2\pi} \frac{\Gamma}{2\pi r} r d\theta = \underbrace{\Gamma}_{\text{vortex}}_{\text{strength}}$$

4. Dipole (doublet flow)

A dipole is a superposition of a sink and a source with the same strength.

2D dipole:

$$\phi = \frac{m}{2\pi} \left[\ln \sqrt{(x-a)^2 + y^2} - \ln \sqrt{(x+a)^2 + y^2} \right]$$
$$\lim_{a \to 0} \phi = \underbrace{\frac{\mu}{2\pi}}_{\substack{x = 2ma \\ \text{constant}}} \frac{\partial}{\partial \xi} \ln \sqrt{(x-\xi)^2 + y^2} \Big|_{\xi=0}$$
$$= -\frac{\mu}{2\pi} \frac{x}{x^2 + y^2} = -\frac{\mu}{2\pi} \frac{x}{r^2}$$

2D dipole (doublet) of moment μ at the origin oriented in the +x direction.

NOTE: dipole = $\mu \frac{\partial}{\partial \xi}$ (unit source)

$$\phi = \frac{-\mu}{2\pi} \frac{x \cos \alpha + y \sin \alpha}{x^2 + y^2} = \frac{-\mu}{2\pi} \frac{\cos \theta \cos \alpha + \sin \theta \sin \alpha}{r}$$

3D dipole:

$$\phi = \lim_{a \to 0} -\frac{m}{4\pi} \left(\frac{1}{\sqrt{(x-a)^2 + y^2 + z^2}} - \frac{1}{\sqrt{(x+a)^2 + y^2 + z^2}} \right) \text{ where } \mu = 2ma \text{ fixed}$$
$$= -\frac{\mu}{4\pi} \frac{\partial}{\partial \xi} \frac{1}{\sqrt{(x-\xi)^2 + y^2 + z^2}} \bigg|_{\xi=0} = -\frac{\mu}{4\pi} \frac{x}{(x^2 + y^2 + z^2)^{3/2}} = -\frac{\mu}{4\pi} \frac{x}{r^3}$$

3D dipole (doublet) of moment μ at the origin oriented in the +x direction.

5. Stream and source: Rankine half-body

It is the **superposition** of a **uniform stream** of constant speed U and a **source** of strength m.

$$u = \frac{\partial \phi}{\partial x} = U + \frac{m}{2\pi} \frac{x}{x^2 + y^2}$$
$$u|_{y=0} = U + \frac{m}{2\pi x}, \ v|_{y=0} = 0 \Rightarrow$$
$$\vec{V} = (u, v) = 0 \text{ at } x = x_s = -\frac{m}{2\pi U}, \ y = 0$$

For large x, $u \to U$, and UD = m by continuity $\Rightarrow D = \frac{m}{U}$.

3D:
$$\phi = Ux - \frac{m}{4\pi\sqrt{x^2 + y^2 + z^2}}$$

$$u = \frac{\partial \phi}{\partial x} = U + \frac{m}{4\pi} \frac{x}{(x^2 + y^2 + z^2)^{3/2}}$$
$$u|_{y=z=0} = U + \frac{m}{4\pi} \frac{x}{|x|^3}, \ v|_{y=z=0} = 0, \ w|_{y=z=0} = 0 \Rightarrow$$
$$\vec{V} = (u, v, w) = 0 \text{ at } x = x_s = -\sqrt{\frac{m}{4\pi U}}, \ y = z = 0$$

For large x, $u \to U$ and UA = m by continuity $\Rightarrow A = \frac{m}{U}$.

6. Stream + source/sink pair: Rankine closed bodies

To have a closed body, a necessary condition is to have $\sum m_{\text{in body}} = 0$

2D Rankine ovoid:

$$\phi = Ux + \frac{m}{2\pi} \left(\ln \sqrt{(x+a)^2 + y^2} - \ln \sqrt{(x-a)^2 + y^2} \right) = Ux + \frac{m}{4\pi} \ln \left(\frac{(x+a)^2 + y^2}{(x-a)^2 + y^2} \right)$$

3D Rankine ovoid:

$$\phi = Ux - \frac{m}{4\pi} \left[\frac{1}{\sqrt{(x+a)^2 + y^2 + z^2}} - \frac{1}{\sqrt{(x-a)^2 + y^2 + z^2}} \right]$$

For Rankine Ovoid,

$$\begin{split} u &= \frac{\partial \phi}{\partial x} = U + \frac{m}{4\pi} \left[\frac{x+a}{\left((x+a)^2 + y^2 + z^2\right)^{3/2}} - \frac{x-a}{\left((x-a)^2 + y^2 + z^2\right)^{3/2}} \right] \\ u|_{y=z=0} &= U + \frac{m}{4\pi} \left[\frac{1}{(x+a)^2} - \frac{1}{(x-a)^2} \right] \\ &= U + \frac{m}{4\pi} \frac{(-4ax)}{(x^2 - a^2)^2} \\ u|_{y=z=0} &= 0 \text{ at } (x^2 - a^2)^2 = \left(\frac{m}{4\pi U}\right) 4ax \end{split}$$

At x = 0,

$$u = U + \frac{m}{4\pi} \frac{2a}{(a^2 + R^2)^{3/2}}$$
 where $R = y^2 + z^2$

Determine radius of body R_0 :

$$2\pi \int_{0}^{R_{0}} uRdR = m$$

7. Stream + Dipole: circles and spheres

2D:
$$\phi = Ux + \frac{\mu x}{2\pi r^2} \underset{x=r\cos\theta}{=} \cos\theta \left(Ur + \frac{\mu}{2\pi r}\right)$$

The radial velocity is then

$$u_r = \frac{\partial \phi}{\partial r} = \cos \theta \left(U - \frac{\mu}{2\pi r^2} \right).$$

Setting the radial velocity $v_r = 0$ on r = a we obtain $a = \sqrt{\frac{\mu}{2\pi U}}$. This is the K.B.C. for a stationary circle of radius a. Therefore, for

$$\mu = 2\pi U a^2$$

the potential

$$\phi = \cos\theta \left(Ur + \frac{\mu}{2\pi r} \right)$$

is **the** solution to ideal flow past a circle of radius *a*.

• Flow past a circle (U, a).

$$\begin{split} \phi &= U\cos\theta \left(r + \frac{a^2}{r}\right) \\ V_\theta &= \frac{1}{r}\frac{\partial\phi}{\partial\theta} = -U\sin\theta \left(1 + \frac{a^2}{r^2}\right) \\ V_\theta|_{r=a} &= -2U\sin\theta \begin{cases} = 0 \text{ at } \theta = 0, \pi & -\text{ stagnation points} \\ = \mp 2U \text{ at } \theta = \frac{\pi}{2}, \frac{3\pi}{2} & -\text{ maximum tangential velocity} \end{cases} \end{split}$$

Illustration of the points where the flow reaches maximum speed around the circle.

3D:
$$\phi = Ux + \frac{\mu}{4\pi} \frac{\cos \theta}{r^2} = Ur \cos \theta \left(1 + \frac{\mu}{4\pi r^3}\right)$$

The radial velocity is then

$$v_r = \frac{\partial \phi}{\partial r} = \cos \theta \left(U - \frac{\mu}{2\pi r^3} \right)$$

Setting the radial velocity $v_r = 0$ on r = a we obtain $a = \sqrt[3]{\frac{\mu}{2\pi U}}$. This is the K.B.C. for a stationary sphere of radius a. Therefore, choosing

$$\mu = 2\pi U a^3$$

the potential

$$\phi = \cos\theta \left(Ur + \frac{\mu}{2\pi r} \right)$$

is **the** solution to ideal flow past a sphere of radius *a*.

• Flow past a sphere (U, a).

$$\phi = \operatorname{Ur} \cos \theta \left(1 + \frac{a^3}{2r^3} \right)$$
$$v_\theta = \frac{1}{r} \frac{\partial \phi}{\partial \theta} = -U \sin \theta \left(1 + \frac{a^3}{2r^3} \right)$$
$$v_\theta |_{r=a} = -\frac{3U}{2} \sin \theta \begin{cases} = 0 \text{ at } \theta = 0, \pi \\ = -\frac{3U}{2} \text{ at } \theta = \frac{\pi}{2} \end{cases}$$

8. <u>**2D corner flow**</u> Velocity potential $\phi = r^{\alpha} \cos \alpha \theta$; Stream function $\psi = r^{\alpha} \sin \alpha \theta$

(a)
$$\nabla^2 \phi = \left(\frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\frac{\partial^2}{\partial \theta^2}\right)\phi = 0$$

(b)

$$u_r = \frac{\partial \phi}{\partial r} = \alpha r^{\alpha - 1} \cos \alpha \theta$$

$$u_\theta = \frac{1}{r} \frac{\partial \phi}{\partial \theta} = -\alpha r^{\alpha - 1} \sin \alpha \theta$$

$$\therefore u_\theta = 0 \{ \text{ or } \psi = 0 \} \text{ on } \alpha \theta = n\pi, n = 0, \pm 1, \pm 2, \dots$$

i.e., on $\theta = \theta_0 = 0, \frac{\pi}{\alpha}, \frac{2\pi}{\alpha}, \dots (\theta_0 \le 2\pi)$

i. Interior corner flow – stagnation point origin: $\alpha > 1$. For example,

$$\alpha = 1, \, \theta_0 = 0, \pi, 2\pi, \quad u = 1, \, v = 0$$

ii. Exterior corner flow, $|v| \to \infty$ at origin:

$$\alpha < 1$$

 $\theta_0 = 0, \frac{\pi}{\alpha}$ only

Since we need $\theta_0 \leq 2\pi$, we therefore require $\frac{\pi}{\alpha} \leq 2\pi$, i.e., $\alpha \geq 1/2$ only.

$$\frac{1/2 \le \alpha < 1}{\theta_0 = 0, \frac{\pi}{\alpha}}$$

For example,

 $\alpha=1/2, \theta_0=0, 2\pi$ (1/2 infinite plate, flow around a tip)

$$\alpha = 2/3, \theta_0 = 0, \frac{3\pi}{2}$$
 (90° exterior corner)

Appendix A1: Summary of Simple Potential Flows

Cartesian Coordinate System

Flow	Streamlines	Potential $\phi(x, y, z)$	Stream function $\psi(x, y)$
Uniform flow		$U_{\infty}x + V_{\infty}y + W_{\infty}z$	$U_{\infty}y - V_{\infty}x$
2D Source/Sink (m) at (x_o, y_o)	${}$	$\frac{m}{2\pi} \ln((x - x_o)^2 + (y - y_o)^2)$	$\frac{m}{2\pi} \arctan(\frac{y-y_o}{x-x_o})$
3D Source/Sink (m) at (x_o, y_o, z_o)	NA	$-\frac{m}{4\pi}\frac{1}{\sqrt{(x-x_0)^2+(y-y_0)^2+(z-z_0)^2}}$	NA
Vortex (Γ) at (x_o, y_o)	\bigcirc	$rac{\Gamma}{2\pi} \arctan(rac{y-y_O}{x-x_O})$	$-rac{\Gamma}{2\pi}\ln((x-x_o)^2+(y-y_o)^2)$
2D Dipole (μ) at (x_o, y_o) at an angle α	α	$-\frac{\mu}{2\pi} \frac{(x-x_0)\cos\alpha + (y-y_0)\sin\alpha}{(x-x_0)^2 + (y-y_0)^2}$	$\frac{\mu}{2\pi} \frac{(y - y_o) \cos \alpha + (x - x_o) \sin \alpha}{(x - x_o)^2 + (y - y_o)^2}$
3D Dipole (+x) (μ) at (x_o, y_0, z_o)	NA	$-\frac{\mu}{4\pi}\frac{(x-x_o)}{((x-x_o)^2+(y-y_o)^2+(z-z_o)^2)^{3/2}}$	NA

Appendix A2: Summary of Simple Potential Flows

Cylindrical Coordinate System

Flow	Streamlines	Potential $\phi(r, \theta, z)$	Stream function $\psi(r, \theta)$
Uniform flow		$U_{\infty}r\cos\theta + V_{\infty}r\sin\theta + W_{\infty}z$	$U_{\infty}r\sin\theta - V_{\infty}r\cos\theta$
2D Source/Sink (m) at (x_o, y_o)	${\nleftrightarrow}$	$rac{m}{2\pi}\ln r$	$rac{m}{2\pi} heta$
3D Source/Sink (m) at (x_o, y_o, z_o)	NA	$-\frac{m}{4\pi r}$	NA
Vortex (Γ) at (x_o, y_o)		$rac{\Gamma}{2\pi} heta$	$-rac{\Gamma}{2\pi}\ln r$
2D Dipole (μ) at (x_o, y_o) at an angle α	α	$-\frac{\mu}{2\pi}\frac{\cos\theta\cos\alpha+\sin\theta\sin\alpha}{r}$	$\frac{\mu}{2\pi} \frac{\sin\theta\cos\alpha + \cos\theta\sin\alpha}{r}$
3D Dipole $(+x)$ (μ) at (x_o, y_o, z_o)	NA	$-rac{\mu}{4\pi}rac{\cos heta}{r^2}$	NA

Stream + Source = Rankine <i>Half</i> Body	(2D) (3D)	$\phi = U_{\infty}x + \frac{m}{2\pi}\ln r \qquad \qquad x_s = -\frac{m}{2\pi U_{\infty}} \qquad D = \frac{m}{U_{\infty}}$ $\phi = U_{\infty}x - \frac{m}{4\pi}\frac{1}{\sqrt{x^2 + y^2 + z^2}} \qquad x_s = -\sqrt{\frac{m}{4\pi U_{\infty}}} \qquad A = \frac{m}{U_{\infty}}$
Stream + Source + Sink = Rankine <i>Closed</i> Body	(2D) (3D)	$\phi = U_{\infty}x + \frac{m}{2\pi} \left[\ln((x+a)^2 + y^2) - \ln((x-a)^2 + y^2) \right]$ $\phi = U_{\infty}x + \frac{m}{4\pi} \left(\frac{1}{\sqrt{(x+a)^2 + y^2 + z^2}} - \frac{1}{\sqrt{(x-a)^2 + y^2 + z^2}} \right)$
Stream + Dipole = Circle (Sphere) $R = a$	(2D) (3D)	$\phi = U_{\infty}x + \frac{\mu x}{2\pi r^2} \qquad \text{if } \mu = 2\pi a^2 U_{\infty} \qquad \phi = U_{\infty}\cos\theta(r + \frac{a^2}{r})$ $\phi = U_{\infty}x + \frac{\mu\cos\theta}{4\pi r^2} \qquad \text{if } \mu = 2\pi a^3 U_{\infty} \qquad \phi = U_{\infty}\cos\theta(r + \frac{a^3}{2r^2})$
2D Corner Flow	(2D)	$\phi = Cr^{\alpha}\cos(\alpha\theta)$ $\psi = Cr^{\alpha}\sin(\alpha\theta)$ $\theta_0 = 0, \frac{n\pi}{\alpha}$

Appendix A3: Combination of Simple Potential Flows

Far field behavior		φ	$\vec{v} = \nabla \phi$
r >> 1		Υ	с , <i>ф</i>
Source	(2D)	$\sim \ln r$	$\sim \frac{1}{r}$
	(3D)	$\sim \frac{1}{r}$	$\sim \frac{1}{r^2}$
Dipole	(2D)	$\sim \frac{1}{r}$	$\sim \frac{1}{r^2}$
	(3D)	$\sim \frac{1}{r^2}$	$\sim \frac{1}{r^3}$
Vortex	(2D)	~ 1	$\sim \frac{1}{r}$

Appendix B: Far Field Behavior of Simple Potential Flows