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A. ADDED MASS

Aa1. A sphere of volume
�

in a fluid of density � is located at a point (0, � ,0) with respect to a
certain coordinate system. In terms of this coordinate system, (a) identify whether each of
the ����� added mass coefficients �	� 
 are zero (0), or non-zero ( � ) (do not work out any
values).

(b) If the sphere has generalized velocity of (0, �� ,0,0,0, ��� ), the total kinetic energy of the
surrounding fluid is .

Aa2. A sphere is located at � � � � � �� relative to a given coordinate system as shown. In a table for
the added mass coefficients �	� 
 , � � ����� � � � � � � � � , mark all the values: “ � ” if it is positive,
“ � ” if it is negative, and “0” if it is zero.

Aa3. A circular cylinder has radius � =1cm and length � =1m. Its added mass in water can be es-
timated as ��� � = ; ��� � = ; and �!  = .
If the cylinder is translating through water with velocity �� =0.5m/s, assuming potential flow
and ignoring the mass of the cylinder itself, the total amount of work required to bring the
cylinder to rest is .

Aa4. A certain body with added mass coefficients �"� 
 has constant velocities �# � ����$�%� and all
other ��� , &�'� , (*)+�,� . In terms of the added mass coefficients �"� 
 : (a) the forces and moments
on the body (in the body coordinates) are -# = ; -'� = ;
-'. = ; and /�. = ; (b) the linear momentum of the sur-
rounding fluid in the 01# direction is ; and (c) the total kinetic energy
in the fluid is .

Aa5. A certain body has nonzero added mass coefficients only on the diagonal, i.e., ��� 
 =�	� 2 � 
 .
For a body motion given by �# = 3 and ��� = �3 , and all other ��� , (*� =0, the forces and mo-
ments on the body in terms of �	� are -'# = , -'� = , -'. = ,
/,# = , /�� = , /�. = . The total kinetic energy in the fluid at
time 3 =1 is .

Aa6. A sphere of volume 1 m . accelerates at &�# = 2m/s � while at the same time the surrounding
fluid (density � = 1 kg/m . ) is accelerated at &� # = 1 m/s � . The horizontal force on the sphere is
-�# = . If &� # remains the same, this force will vanish if &��# = .

Aa7. A 2D circular cylinder of radius � � moves in an unbounded fluid at �4�%� 5 �"6 7 . Assuming
potential flow, the total amount of work done to bring this cylinder to rest is per
unit width.

Aa8. A two-dimensional square box of width 2� accelerates to the right at an acceleration of
1�"6 7 � while at the same time the surrounding fluid also accelerates to the right at 1 �	6 7 �
(both with respect to a fixed coordinate system). The total horizontal force on the square is

N/m to the [right] [left].

Aa9. A sphere of radius 8��9� � and density �;:���� � 5 � <>= ? @ A is released in a current of velocity
�B� 3 ����C*3 where CD�9� � �"6 7 � . (a) In the absence of gravity, calculate the initial (3���� )
horizontal acceleration &E of the sphere. (b) If the current is absent but there is gravity, cal-
culate the initial vertical acceleration &F of the sphere. (c) If both the current and gravity are
present, calculate the angle G (relative to the vertical) the sphere will tend to move initially.

Aa10. A 2D square body of dimension � �D�	� � in water travels at velocity H�%�%� � � � � �"6 7 , accel-
eration I H�+6 I 3+�J� � � K � �"6 7 � , and no rotation ( (%�%� ). Per unit ( � � ) depth of this body: (a)
calculate the forces -�# , -1� and moment /�. on this body; (b) obtain the linear momentumL

of the fluid around the body in the 01# , and 0;� directions; (c) find the kinetic energy M	N of
the fluid.
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A1. A two-dimensional ellipse has the following added mass coefficients:

�"# # � � � � �
�	� � � � � � �
�	� � � #� � �;� � � � � � � �

a

b

x2

x1

Find the hydrodynamic forces -�# and -'� and moment / on the ellipse, per unit span, when
its translational and angular velocities through an infinite inviscid fluid are the following
functions of time 3 :

(a) �#*� � ��� �,� (,� �
(b) ��#*� � ��� �,� (,�,3
(c) �#*��� 3 � �'� � � ( �,�
(d) ��#*� � ��� ��� 3 (,� �
(e) �#*�,K 3 �'� � � 3 ( � �
(f) �#*�,K 3 �'� � � 3 ( �,3
(g) If the ellipse is now stationary, but the infinite fluid is moving past it in the �*0'� di-
rection at a velocity � ��� 3 , find the hydrodynamic forces and moments on the ellipse.

A2. A slender vehicle operating in an infinite fluid of density � can be modeled as a circular
cylinder of length � and radius � .

x3

x2

x1

-L/2 L/2

r

Using strip theory, estimate

(a) the added mass coefficient �	� �
(b) the added moment of inertia �"� �
(c) the added moment of inertia ��  

A3. A flat plate of triangular shape lies in the 0'#�"0;. plane, as shown:

x1

x3

x2

-L/2

L/2

A

A

(a) Assuming that C 6 ����� � , use strip theory to find �"� � and ��� � .
(b) What other elements of the added mass matrix are non-zero?
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A4. A buoy consists of a large sphere under a circular cylinder, as shown:

a

r

The volume and added mass of the cylinder are negligible compared to those of the sphere.

(a) Write the equation of motion for heave.

(b) Estimate the buoy’s natural frequency in heave.

A5. A cone of negligible density is pivoted about the apex in a fluid of density � . The length � is
much larger than its largest radius 8 � .

y

z

x

Ro

L
g

(a) Using strip theory, find the added moment of inertia about the apex (��� � ).

(b) Calculate the center of buoyancy .

(c) Write the equation of motion for roll.

(d) Find the natural roll frequency.

A6. A body is composed of two cones of elliptical cross-section. The cones are aligned as shown
along the 0># -axis. Each section has minor axis of length � � and major axis of � � . The cones
are arranged so that the major axis of the elliptical section is parallel to the 0'� -axis for 0>#����
and parallel to the 0>. -axis for 0># �4� . The ratio � 6 � is constant at all sections and �;� 0'# �B�
� � 0># � . Each cone is of length � so that the composite body is of length � � . ������� and ��� � .

Calculate:

(a) �	. . ; (b) ��� . ; (c) �!  ; (d) ��� � .
(e) Indicate schematically which �	� 
 can be obtained by means of the slender-body
approximation and which cannot.

(f) Comment on the limits of applicability of the slender-body approximation for this
object. In particular, if �	� � but ����� � , which �"� 
 would be suspect?
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A7. A semi-submersible platform has the configuration shown:

30 m

100 m

The diameter of the uprights is 5m, and that of the pontoons is 10m. The volume displaced
by the uprights is negligible compared to that of the pontoons.

(a) Estimate the added mass in heave, neglecting the effects of the free surface, the
uprights and the interactions between the pontoons.

(b) Use the result of (a) to estimate the natural frequency in heave of the platform.

A8. A new class of submarine can be modeled by a cylinder of length � and radius 8 , with a
vertical sail and horizontal elliptical wings of major and minor axis radii � and

�
and length�

, as shown.

R

2a

h

h
2b

x3
x2

x1

x4

x6
x5

Assuming that these main members are slender so that their longitudinal added mass may
be ignored, and neglecting also the interactions among the members, find

(a) �	. . ; (b) ��. � ; and (c) �	� � .
(d) Find the instantaneous force and moment H- , H/ on the submarine at an instant
when its 6 degree-of-freedom motions are: velocity [1,2,3,1,2,3] and acceleration [3,2,1,3,2,1].
You may leave your answers in terms of �	� 
 .

A9. An underwater vehicle is to have a manipulator arm mounted on it. The designers of the
vehicle must know the forces and moments acting on the arm and the objects it manipu-
lates so that they can select appropriate actuator motors. You may assume the following
simplifications for this problem:

Idealize the arm as two circular cylinders each of length � having radii � # and � � respec-
tively, with � # � � � � .
Idealize the arm’s load as a spherical package of radius � � . The radius � # is small com-
pared to � � , and � � is small compared to � .

Vehicle

Manipulator Armload

x2

x1
radius r1

radius r2

radius r0 l

l

x3

In the coordinate system shown, estimate ��# # and �!  .



13.021 Supplemental Problems . . . . . . . . . . . . . . . . . . . . . A. ADDED MASS . . . . . . . . . . . . . . . . . . . . . Page 6

A10. Housing for certain underwater sensor equipment has a geometry shown below. The sphere
has radius � , and the cylinders have radius � � 5 � and length � � . The density of the device can
be assumed to be uniform and have a value of twice that of water.

a

a

4a

Vertical Orientation

a

a

4a

Horizontal Orientation

(a) To get it to the sea floor, the device is lowered into the water and then released, find
its initial acceleration for (i) a vertical orientation; and (ii) a horizontal orientation.

(b) Assuming deep water, calculate the terminal drop velocity
� . for the device falling

in a horizontal orientation for (i) very small � ; and (ii) large � .

(c) An engineer is concerned that if dropped in a vertical orientation, the device may
become “unstable” and reach the bottom in an unpredictable manner. If the equip-
ment is falling with steady downward velocity � at a small angle G � from its vertical
position, estimate, based on potential flow effects only, the overturning moment / .
on the device as a function of � and G � .

x

O

y
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B. BASIC EQUATIONS

Ba1. A fluid flow is steady if [
� 6 � 3 ] [D/Dt] [both

� 6 � 3 and D/Dt] [either
� 6 � 3 or D/Dt] of the flow

variables is/are zero.

Ba2. The two common ways of describing fluid flow are the so-called and the
descriptions.

Ba3. Although fluids, such as water, are really made up of discreet molecules, we are able to de-
scribe their behavior by differential equations by virtue of a hypothesis.
Fluids differ from solids in that a fluid at rest cannot sustain .

Ba4. If the velocity field of a flow is given by HF � H0'� 3 � , the acceleration of any fluid particle is given by
H�;� H0'� 3 � = . If a vector ‘acceleration’ meter moves around the
flow at a prescribed velocity H� , the acceleration it records at a point H0 is given by .

Ba5. The temperature at any point in a room is given by �� 01� �>� �;� 3 � . A small fly flies around the
room with a velocity H� . The time rate of change of temperature experienced by the fly is
given by .

Ba6. An ROV measuring water salinity is moving with velocity � 0;3 ������ � � �� �,K 3 �� . The salinity �
of the water changes with the tidal currents, and is given by �*� 0'� �>� � � 3 ��� � 0 � � 7 � � 3 � . Find the
rate of change of salinity of the water as measured by the ROV.

Ba7. In a certain river with a velocity field HF � H0'� 3 � , the concentration of dissolved oxygen is given
by the function H� � H0'� 3 � . A fish is in the river, with (absolute) velocity H�B� 3 � . The (time) rate of
change of dissolved oxygen concentration

�
experienced by the fish is given by .

The fish lays eggs which are very small and neutrally buoyant, the rate of change of
�

as ex-
perienced by the eggs is . Some of the eggs eventually become trapped
among rocks and remain there, the rate of change of

�
experienced by those eggs is then

given by .

Ba8. To determine the temperature 	 in a certain part of the ocean, a fixed probe measures a
rate of change of temperature given by

� 3 , while a heavy probe dropped from the surface
and reaching a constant downward velocity of ��
 records a rate of change of temperature
in that area given by � � 
 � � 3 . If the temperature in that region is known to be indepen-
dent of the horizontal coordinate, i.e., 	J��	+� �;� 3 � , then the temperature there is given by
	B� � � 3 � = + constant. If the fluid velocity there is given by the
previous problem, a temperature probe drifting freely with the flow will record a rate of
change given by .

Ba9. A small probe moves with (absolute) velocity H� in water which has a velocity field given by

HF � H01� 3 � . If the probe measures relative velocity, the measured velocity is H� � 3 � = .
If H� = constant, the measured “acceleration” at the probe is HC+� 3 �� I H� 6 I 3�� .
If H� � H�B� 3 � , HC+� 3 � = . If the probe is fixed, H� =0, HCB� 3 � = .

Ba10. If � is the density and HF the velocity of a fluid, the condition of incompressibility is expressed
mathematically as . In marine hydrodynamics, incompressibility is of-
ten a valid assumption because the [velocity, pressure, shear stresses, temperature, gravity]
is [much greater, comparable, much smaller] than that of sound waves.

Ba11. The differential equation governing the conservation of mass of a fluid, whether compress-
ible or not, is . If the fluid is incompressible, then the den-
sity � satisfies .

Ba12. The conservation of mass equation depends on the assumption(s) of [constant density]
[irrotationality] [inviscid fluid] [incompressibility] [Newtonian fluid] [matter cannot be cre-
ated]. For incompressible flow, the density � satisfies the equation .

Ba13. The velocity field in a certain part of the ocean is given by E � K�� � � � K 0"� � � � � � � , F �
��� � � � K 0 � � � � � � � and � � � � � �1� K 0 � � � � � � � . The constant � must be � = .
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Ba14. Dye is injected into a flow at a given point. In steady flow, the locus of all dyed particles
forms a [pathline] [streamline] [streakline] [none of the above]. In unsteady flow, the locus
of all dyed particles forms a [pathline] [streamline] [streakline] [none of the above]. A small
neutrally-buoyant particle is released into the flow at another point. In steady flow, the line
that the particle makes forms a [pathline] [streamline] [streakline] [none of the above]. In
unsteady flow, this line forms a [pathline] [streamline] [streakline] [none of the above].

Ba15. A tanker grounds on a reef and begins to leak a neutrally buoyant chemical into the ocean.
The trace of the chemical as shown in a picture taken from the sky forms a .
At some time the captain of the vessel abandons ship and jumps into the ocean. Assuming
that he drifts with the current, the trajectory he moves through describes a .

Ba16. In a certain rescue operation, a marker is dropped onto the water from a helicopter. The
trajectory traced by the drifting marking forms a [streamline, pathline, streakline, none of
the above]. Eventually, the marker is observed to again pass the point where it was dropped.
The flow must be [rotational, irrotational, can’t tell]. To learn more about the flow, the he-
licopter pilot releases a large number of similar markers at the same point in quick succes-
sion. The line connecting these markers at a later instant is a [streamline, pathline, streak-
line, none of the above]. It is now observed that all of the markers have identical trajectories
and all eventually pass through the drop-off point after equal time intervals. The flow is
most likely [rotational, irrotational, can’t tell].

Ba17. Of the following: (a) velocity; (b) pressure; (c) shear stress; (d) density; (e) vorticity; (f)
velocity potential; (g) mass flux; (h) momentum flux.

The scalar quantities are (write only the letters):

The vector quantities are:

The tensor quantities are:

Ba18. A certain fluid flow has a velocity field HF � H0'� 3 � and density �;� H0'� 3 � . The rate of change of buoy-
ancy experienced by a small fish swimming with (absolute) velocity H� and maintaining con-
stant volume

�
is . After a while, the fish stops swimming

but instead tries to adjust its volume to remain neutrally buoyant (and therefore freely drift-
ing). The rate of change of its volume I � 6 I 3 must be proportional to .

Ba19. A small thin flat disk of surface area C is oriented in a fluid with directional cosines given
by � � # � � � � � . � . If the stress tensor there is � � 
 , � � �!�%� � � � K , the net force on the disk is given
by -'� = , �'� � � � � K .

Ba20. The stress tensor in a flow is given by � � 
"�J����� ; � � � =1,2,3. The force acting on a small
surface, area 2 C , with unit normal (into the surface) given by �� � � � � �+� � �+� � 6

� K is
2 H- = � , , � .

Ba21. The basic assumption of a Newtonian fluid is that there is a linear relationship between
and . The constant of pro-

portionality is given the name .

Ba22. The velocity of a Newtonian fluid is two dimensional and given by HF � � 0 � �>� �*0 � � � . The
stress tensor has components: � � � = , � � � = ,
� � � = , � � � = .

Ba23. The velocity F � and the total stress � � 
 of a fluid is related by the Euler equations which are
given in Einstein notation form as: . If the fluid is Newto-
nian, the shear stresses are related to by relationships,
and can be eliminated to give the following momentum equations for F � and the pressure �

.

Ba24. The Navier-Stokes equations govern the conservation of of a fluid and
assumes that the fluid is and . For a flow which is
steady, one-dimensional (E � E � 0>� and

� 6 � � =
� 6 � � = F = � =0), in the presence of a body

force given by the potential �*� �>� 0 � � ��� � ��� � � �'� (where � is a constant), reduce these equa-
tions (in Cartesian form).
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Ba25. If � is the pressure and � � 
 the shear stress in a fluid, the force on a fluid volume
�

bounded
by a closed surface � which has normal � 
 , � =1,2,3, is given by -'� = ��� � I � .
This can also be expressed as ����� � I � .

Ba26. For a viscous flow with velocity HF , the kinematic boundary condition on a body with surface
velocity H� and surface normal �� , specifies that . The dynamic condition
in this case requires the continuity of . For ideal flow, the kinematic con-
dition becomes and the dynamic condition specifies the continuity of

. In the absence of dynamic boundary conditions, the body force due to
gravity � can be eliminated from the momentum equations by replacing the total pressure
� with .

Ba27. A fish swims by moving its body � � H0'� 3 � with velocity �B� H0'� 3 � . The proper boundary con-
dition on the fish assuming viscous fluid is . If the fluid is
inviscid, the appropriate boundary condition on the fish would be .

Ba28. A spherical gas bubble of radius 8 and internal pressure � � is formed in water. If the surface
tension coefficient between the gas and water is � , the pressure outside the bubble must be
� = . In terms of (kg-m-s) the units of � is .

Basic Equation problems continued next page
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B1. Consider a two-dimensional steady viscous flow between two parallel walls where E � E � � � ,� � � � 0>� and F � � � � :

h
y

x

u(y)

(a) Determine whether or not this flow satisfies continuity.

(b) Find the simplified Navier-Stokes governing equation for E .

(c) Given
� � 0>�B���*� 0�� K . Show that E � � �B��� #*���� ��� � � 6 � , satisfies the resulting

equation of (b). (where � # and �� are constants.)

(d) If the lower and upper walls are stationary and located at � � � � �
respectively, apply

suitable boundary conditions to determine � # and �� .
(e) Calculate the shear stress � � � anywhere in the fluid. What is its value � � at the lower
wall?

(f) By using a simple control volume for momentum conservation, show that given� � 0;� only (and not E � � � ), � � � can be obtained in terms of � � .

B2. The x-component of the Navier-Stokes equations is:� �� �	��
 � �� ���� � �� ����� � �� ����� ������ � �� ����� � � ! �� � ! � � ! �� � ! � � ! �� � ! " � �# � � $� �
(a) Reduce this to the special case of steady 2-dimensional incompressible flow be-
tween two infinite parallel plates in the absence of body forces. In doing this, give a
physical interpretation of each term and carefully state the reason for keeping or elim-
inating it.

(b) What boundary condition(s) would need to be imposed in order to solve the prob-
lem?

(c) What additional assumption(s) would one need to obtain Poiseuille flow in a chan-
nel?

B3. A rudder is tested in a two-dimensional flow tunnel of height
� � � m, as shown:

h U H

BA

After the flow has become STEADY, the horizontal velocity far ahead of the rudder is found
to be uniform and given by E � � � � m/s. Some distance downstream, the velocity profile
can be (very) roughly approximated by a region inside the wake with E � � 6 � and an exterior
region with E � K � 6 � . You may assume that the total pressure at the downstream station
isuniform across the tunnel and given by the value at the wall.

(a) Determine the height of the wake region % .

(b) Assuming ideal fluid flow (no shear stress), calculate the pressure difference
�'& ��)(

.

(c) Calculate the drag force * on the body.
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B4. A circular disc is mounted in a circular water tunnel of diameter * . The velocity far up-
stream is

� � . When the upstream pressure is dropped to
� � , a long vapor cavity forms be-

hind the disc. The pressure in the cavity is
�

� �
� � . The velocity in the fluid surrounding

the cavity can be assumed constant far downstream. Ignoring gravity and letting the vapor
density be zero, find the drag on the body in terms of

� � � � � � � � � * and the fluid density � .

DVo disc vapor
P=Pv

Po

B5. A ducted propeller (such as a so-called Kort nozzle) receives water at a velocity of 3 m/s. The
water has a density of 1000 kg/m . . The inflow velocity is uniform and the cross-sectional
area of the upstream end of the duct is 0.5 m � . The velocity at the duct exit is not uniform
but is given by F �9� � � � �B� A

�

A �

�
� , where � � is the radius of the circular cross-section and� � � 5 m/s.

Vin

ro
v(r)

(a) Show that
� � is the average exit velocity.

(b) Find the thrust.

(c) If the exit velocity was uniformly equal to
� � , what would the thrust be then?

B6. A two-dimensional barge with dimensions as shown in the figure is holed in its bottom. The
hold opens an area � into the empty hull.

B

a

h H

The top of the barge is open to the atmosphere. The hole is small compared to the di-
mensions of the barge so the barge sinks very slowly. Therefore, you may treat this as a
quasi-steady problem.

(a) What does the barge initially weigh?

(b) What quantity of water must enter the barge for it to sink?

(c) Show that the velocity of water entering the tank is constant in time. You may as-
sume the velocity is uniform across the area of the hole.

(d) How long will it take the barge to sink?
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B7. Consider a steady, incompressible flow of a viscous fluid between two infinite plates sepa-
rated by a distance

�
:

��������������������������������������������������������������������������

������

��

��������������������������������������������������������������������������

p=p(x)

	�	�	
�
�
h y

x

u=u(y)

A constant shear stress � ? is applied on the wall at �,� �
which induces a constant shear

stress at the bottom � � , a pressure variation �1� 0;� , and a flow profile E � � � sketched above.

(a) Write down the (simplified) governing equation(s) and the boundary condition(s)
for this problem.

(b) Using a control volume argument, write down an equation for � � � �
� � � ? � � � � .

(c) Using the � � � found in (b), solve the governing equations for E � � � in terms of � ? and
� � .
(d) If E � � �� � , find � � as a function of � ? and � .

(e) If it is given that the volume flow rate � =0, find an equation for the velocity profileE � � � as a function of the applied shear stress � ? and
�

only.

(f) What is the position of the point � where E � �+� =0 for the profile you obtained in (e)?



13.021 Supplemental Problems. . . . . . . . . . . . . . . . . . . . . . C. CALCULUS . . . . . . . . . . . . . . . . . . . . . . Page 13

C. CALCULUS

The following problems are intended to refresh some concepts of vector calculus needed for this
course. For all problems, the gradient operator in the Cartesian coordinate system is:

������� �� ��� �� �� ��� �� �� �
In cylindrical polar coordinates it is defined as:��	� �
 � �� � � �
 � �� �� � � �
 � �� �
We define *!6 * 3� � 6 � 3>� HF� H� as the material derivative.

C1. Given the scalar function �'� 01� �>� � � expand the following:

(a) H� �
(b) H�  H� � 9H� � �
(c) H� �  H� �  � H� � � �
(d) H� � H� �
(e) for any �1� � � G;� � � , H� � �

C2. Given the scalar function �'� 01� � �� � 0 . � � � �*0 . Evaluate the following:

(a) H� �
(b) H� � �
(c) H� � H� �

C3. Given the vector functions HF � E ��1� F �� � � �
�

and H�4��� ��1��� �� ��� �� , where E , F , � ,� , � , and �
are scalar functions of � 0'� �>� � � 3 � Evaluate the following:

(a) H�  HF
(b) H� � HF
(c) show HF � H� � ��H� � HF
(d) HF� H�	� where

�
is a scalar function of � 0'� �>� � � 3 �

(e) HF� H� HF
(f) HF H
�  HF

C4. For HF and
�

above, with constants � and �
(a) Expand the following equation into its three components in the Cartesian coordi-
nate system: ���

�� ?  ���� ? � H
F� H� � HF � � #� H� � ��� H� � HF

(b) Let H� � H� � HF . Take the curl ( H� � ) of the equation in part (a) to yield the following
vector equation:  �!" � � � ���# �$ � ��
HINT: Use the vector identity:��&%(' �) % �* + � ' �*�, �� + �) � ' �) , �� + �* � �) ' �� , �* + � �* ' �� , �) +
(c) Determine H� as a function of HF and H� .

(d) Simplify H� for the two dimensional case, i.e.� � 
 �� �� ��.- �� ���0/ .
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C5. Gauss Theorem states that for a volume
�

enclosed by a surface � the following applies for
any vector whose derivatives exist in

�
and on � :

� � H�  H- I � � � � H-  H� I C
If H-%�%�+� � � �,� ��� � � � ��1� � � � �,� ��� 0 � � �� � � 0 � � � � � � � � �� and S is a negative hemisphere
centered at the origin, verify this theorem.

C6. Stokes Theorem states that for a Surface 7 enclosed by a curve � the following applies for
any vector whose derivatives exist on � and � :

� � H�  �;H� � H- � I ��� � � H-  I H�
If H- � � ���� � � � ��'�,� ���� 0 � � �� and S is a circle centered at the origin, verify this theorem.

C7. Given the vector function HF � 0 . ��1�"0 � � �� ��0 � �
�

, find the circulation of HF around the rectan-
gle with corners (in � 01� �>� � � Cartesian coordinates) at (2,1,0), (-2,1,0), (-2,-1,0) and (2,-1,0),
where circulation is defined as:

� �� � , ��	�
where � is the bounding path and HI � is the unit tangent vector to � .

HINT: Recall Stokes’ Theorem: � � 
 ' ��&% � +�, �� �� � � �� � , ��	�
where S is any surface bounded by � and �� is the unit normal vector to the surface.

C8. Given a vector field in polar coordinates HF � � � G �� F A �� A� F � �� � where
F A = 0 for any �F � = M A= � for � �,�

M #A for � �,�
(a) What are the units of M ?

(b) Find
� �
HF� HI � , where � is a circle of radius of � � � and HI � is the unit tangent vector

to � .

(c) Find
� �
HF� HI � , where � is a circle of radius of � � � and HI � is the unit tangent vector

to � .

(d) Does there exist a scalar potential � such that HF � H� � for � �%� ? For � �4� ? If so,
find

� �
HF� HI � in terms of � .

C9. Show that the “material derivative” defined by:�� ?  �� ? �JH
�  H�

when applied to a vector H� � H� � 0'� �>� � � 3 � (with H� � H� � � ) yields:� ��� ? � �
��
� ? �

#� H
� � H�  H� �*�

If H� is given by H� � H� �1� 0'� �>� � � 3 � , and the material derivative of H� is zero, i.e., * H� 6 *B3 � � ,
show that the following quantity must be a function of time only:

� �� ? �
#� � H
� � � � � � � 3 �

C10. Consider the integral: � � 3 �� � � � ? �= � ? � � � 0'� 3 ��I 0	�
Given: �;� 3 � � � 3 , � � 3 � � 3� 5 , and

� � 0'� 3 � ��� � �*0 � � � � 3 . (a) Evaluate I �;� 3 � 6 I 3 (Hint: recall
Leibniz rule in calculus).

C11. A spherical balloon is being filled with air.

(a) If the radius of the balloon is given by � � 3 �*��� �1� 3>�"� � , calculate the time dependent
volume of the sphere

� � 3 � by means of a volumetric integral using a spherical coordi-
nate system. Differentiate to obtain the time rate of change of the volume I � � 3 � 6 I 3 . Do
not employ simple expressions or formulas for the volume of the sphere. Rederive the
expressions by integrating in the spherical coordinate system, as described.

(b) Calculate I � � 3 � 6 I 3 again by performing a surface integration of the normal velocity
��� ��I � � 3 � 6 I 3 over the surface of the sphere. Again, rederive all expressions for the
surface area of a sphere by integration, and do not use known formulas.

(c) Guided by the problem above, write down a form of Leibniz rule in three dimensions
(assuming spherical symmetry).
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I. IDEAL FLUID FLOW

Ia1. Kelvin’s theorem is a statement of the conservation of and its statement
and conditions are: .

Ia2. Consider a rotating fluid between two circles radii 8B# and 8 � ( 8 ���,8+# ). If the circulation at
8+# is

� # and at 8 � is
� � , the average vorticity of the fluid is � = , and the

average angular velocity is ( = .

Ia3. In a certain flow, a small marker particle released at point P is observed to pass the same
point again after some time. The flow can NOT be: [steady] [unsteady] [rotational] [irro-
tational] [steady and irrotational] [unsteady and irrotational] [steady and rotational] [un-
steady and rotational].

Ia4. The definition of the circulation along a contour � is
�

= . For
�

to be
meaningfully defined, it is necessary for � to be [closed] [material] [fixed in space] [not
changing in time] [on a two-dimensional plane] [in an ideal fluid] [none of the above].

Ia5. A testing tunnel with circular cross sections has a radius of � # =10m at the inflow and � � =1m
at the test section. A small vortex ring forming along the wall near the inflow has a cross-
sectional area of C # =0.05m � . If the longitudinal velocity profile there is given by E # � � � = � � �
� � 6 � # � � � m/s, the average (circumferential) vorticity in the ring is � # = . At
the test section, this ring will have a cross-sectional area of C � = ; and an
average vorticity of � � = .

Ia6. A smoke ring is modelled as a vortex tube of diameter (across the tube) of � � � and a circum-
ference (length of the tube) of � � . If the vorticity inside the tube is constant and given by� = � 7 � # , the total circulation around the smoke ring is

�
= . If the smoke

ring expands to a circumference of � � , the diameter will become � � , the
circulation

�
= , and the vorticity � = .

Ia7. In an ideal flow, a vortex tube spanning two side walls of a tank 1m apart has a cross-
sectional area that varies linearly from 0.1 m � at one end to 0.2 m � at the other end. If the
circulation around the tube is

�
= 1m � /s, the average vorticity at the small end of the tube

is � # = . After some time, the tube area becomes a constant across the
tank. The (constant) tube cross-sectional area is now m � and the aver-
age vorticity inside the tube is � = . Further downstream, the tank width
increases to 2m. The average vorticity inside the tube (still of constant cross-sectional area)
is now � = .

Ia8. A three-dimensional free vortex tube, having components of circulation H� ��� � � � � � � � � � , is
in an infinite fluid which has steady translational velocity H�D��� E � F � � � . The force on the
vortex tube is given by H-J��� - � � - � � - � � which has components - � 6 �	� ,
- � 6 �B� , and - � 6 � � .

Ia9. By rotating the wall of a circular tube, the water inside is made to rotate as a rigid body with
angular velocity ( . Assuming 2D flow, the radial and circumferential velocities (with respect
to the axis of rotation � ) is F A = and F � = . The vorticity
is � = � � = . At a given instant, the tank wall stops and the fluid motion
eventually also stops starting from the outer circumference. This decay in motion can be
described by the equation governing the vorticity � : .

If the radius of the tube is 1cm, the decay time is of the order of sec.

Ia10. * H�*B3 � � H��
� � HF ��� � � H�

This is the so-called equation and the first, second and third
terms represent respectively
first term: .
second term: .
third term: .
In two-dimensional flows, this equation becomes (in vector form): .
For this flow, [mass] [linear momentum] [angular momentum] [translational velocity] [an-
gular velocity] [energy] is/are conserved.
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Ia11. In a vorticity equation, the term expressing the change of vorticity due to vortex elongation
and rotation is . In two dimensions, this term reduces to .

Ia12. A tanker of draft % < =4m carries oil of density 80% of sea water to a height % � = 6m. If a
small puncture hole is made on the bottom of the hull, the initial velocity of the leaking oil
is . (Assume ideal flow and open tanks.)

I1. As a ship advances through calm water at 6 knots, the water level at the bow is observed to
be higher than the undisturbed free surface. How large is this change in water level?

h

I2. Consider the three-dimensional inviscid incompressible flow with velocity components given
by:

E � 0'� �>� � � 3 ��� �*C+� 3 � � � �+0F � 01� �>� �;� 3 �� C+� 3 � 0!� � �
�B� 01� �>� �;� 3 �� �+� � �

(a) Find �B� � � given �+� � �� � .
(b) Describe this flow in words and/or pictures.

(c) Determine the vorticity vector.

(d) Find the function C+� 3 � from the vorticity equation given C+� � �� � .
(e) Find the circulation

� � 3 � around a path of fluid particles initially (i.e. at 3+� � ) lo-
cated in a circle of radius 1 on the plane �B� � .

I3. In order to determine the velocity through the test section of a propeller tunnel, a manome-
ter is placed across the upstream contraction, which has an area ratio of 3 to 1. The manome-
ter fluid has a density of 1.2 times that of water. Assuming that the velocity is uniform over
any section, what velocity corresponds to a

� % of 1 meter?
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I4. A rising smoke ring is to be represented as a toroidal vortex filament of constant vorticity� across the ring, and major and minor radii 8 and � . The flow is otherwise assumed to be
ideal and irrotational.

R r
?

w
?

z

Γ

The ring expands linearly with vertical distance travelled, � , as it rises, with radius given by
8B� � ��� 8 � ��C � for some positive constant C .

(a) Determine the direction of the vorticity (clockwise or counterclockwise with respect
to the positive � axis) within the filament. Explain your reasoning.

(b) What are the dependencies on � of (i) the circulation
�

around the ring; (ii) the
radius � ; and (iii) the vorticity � given their initial values at �B� � are respectively

� � � � �
and � � ?

I5. Consider the steady two-dimensionsal flow given in Problem B1, part (b). You may leave
your answers in terms of the constants � # and �*� .

(a) Calculate the vorticity � � . Is the flow irrotational?
(b) Write down the vorticity equation for � � for the case of steady, two-dimensional
flow. Does your answer in (a) satisfy this equation?
(c) Can you find a velocity potential � and/or stream function � to describe the flow?
Justify your answer and find � and/or � if possible.
(d) Based upon the vorticity equation of (b), show that the velocity profile E � � � can at
most be a quadratic function for any pressure variation

� � 0>� or wall boundary condi-
tions.
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L. LIFTING SURFACES

La1. A two-dimensional hydrofoil has symmetric profiles given by � � � � � �1� = � � � � � ��� � � � � 016 � � ,
� � 6 � � 0 � � 6 � . According to thin-wing theory, the potential flow around the foil mov-
ing with longitudinal speed � can be modeled by a line source of strength distribution
��� 0;� = . The velocity potential is then � = .

La2. The following problems refer to the 2 foils of chord length
� � 1 m, centered at 0�� � . They

operate in an oncoming stream of � � � � � m/s with geometries described by:

(I) (II)
� �B� � � � 5 � �*� � 0 � � � �B� � � � � � �� � 0 � �
� �1� �*� � � 5 � �� � 0 � � � �1� �

(a) The flow over foil (I) is given by a source distribution �"� 0>� = m/s.
(b) The flow over foil (II) is given by a vorticity distribution �'� 0;� = m/s.
(c) Foil (I) at an angle of attack of � will produce the same lift � =

N/m as foil (II) at a 3 � angle of attack. In this case the center of
pressure is at 0 = m for foil (I) and 0 = m for foil
(II).
(d) Foil (II) will least likely cavitate at an angle of attack of � .

La3. At the leading edge of a foil at an ideal angle of attack ��� , [velocity is finite] [velocity is in-
finite] [streamlines enter smoothly] [there is a stagnation point] [there is separation] [slope
of dividing streamline is equal to the camber slope]. For a foil with symmetric parabolic
camber, �1�'� .

La4. A two-dimensional hydrofoil of chord length
� � 1 m operating in water at a speed of 10m/s

generates a lift of 50,000 N/m at a 5 � angle of attack. At ZERO angle of attack, it will generate
a lift of N/m. At this speed, the foil is expected to stall at a 10 � angle of
attack. The maximum lift the foil can produce is N/m.

La5. The total circulation around a lifting surface is determined by specifying the
condition which states .

La6. A two-dimensional hydrofoil of chord length
�

operates at a speed � . If the circulation dis-
tribution along the foil is given by �'� 0>� = �B� � 6 �!� 016 � � ( 0 =0 is mid-chord), the difference
between the tangential velocities on the bottom and top surfaces of the foil is E � � 0>�+�E�� � 0>� = , the pressure difference is � � � 0>� � �

� � 0;� = ,
and the total lift on the foil is � = . If the half thickness of the foil is
given by 3 � 0;� = � � � � � � 0>6 � � , ( � � 6 � �%0 � � 6 � ), the source distribution along the center line
is �"� 0>� = .

La7. A two-dimensional hydrofoil of chord length
�
=1m has a parabolic camber distribution with

maximum camber of 5%. The lift coefficient of the foil as a function of the angle of attack � is� � = . If the foil has a span of � =10m and supports a vessel of deadweight
(‘displacement’) 10 � N ( � 100 tons), at a fixed angle of attack � =0.1rad, the vessel will be
lifted out of the water at a speed of � = . At that point, the overturning
moment on the vessel due to the hydrofoil is .

Lifting Surfaces problems continued next page
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L1. A parabolic camber hydrofoil has a maximum camber of 5% of the chord. If it is freely piv-
oted at its leading edge, what angle of attack will it assume?

L2. A parabolically cambered 2-D hydrofoil has a chord of 3m and is operating in 15 � C sea
water at 30 knots. The maximum camber is 0.1m.

α

3m

30 kts

0.1m

(a) Determine the angle of attack � if the foil is to generate a lift of 200,000 Newtons per
meter of span.

(b) Where is the center of lift at this angle of attack?

L3. A 2-D hydrofoil has a chord length of 1 meter and operates at an angle of attack of 5 degrees
at a speed of 10 m/s in sea water at 15 � C. It has no camber, but has the following thickness
distribution: 3 � 0;�� � � � � �� � 7 � �

P (0,1)
y

x

5 o

-1/2 m 1/2 m

10 m/s

(a) How much lift per unit span does the hydrofoil produce?

(b) Calculate the moment about the midchord.

(c) Calculate a source distribution ��� 0;� and vorticity distribution �'� 0;� to represent this
foil.

(d) Calculate the total vertical velocity at the field point
� � � � � � �	� . You may leave the

answer in terms of definite integrals.

A second hydrofoil has the same chord length, the same thickness distribution and enough
camber to make one surface flat. The camber distribution is: � � 0;��,3 � 0>�� � � � � �*� � 7 � �

η (x)

y

x

10 m/s

1/2 m-1/2 m

(e) Calculate the lift if this foil operates at an angle of attack of 0 � .
(f) Calculate the lift if this foil operates at an angle of attack of 5 � .
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L4. A two-dimensional hydrofoil with a chord of 2 meters is designed to produce 1000 Newtons
of lift per meter of span when moving through 5 � C fresh water at a speed of 1 m/s. The
desired distribution of vorticity is:

x

(x)γ

β

-1m
trailing edge

1m
leading edge

(a) Find
�

.

(b) Locate the center of pressure, 0�� 
(c) Find the slope of the camber line, � �� � .

Note that:
� �� � �� � � ��� ��� � � �

�
� 	 �

� �� �
�
� � � ��� ��
�� � � �

�
� 	 ����

L5. A 2-D hydrofoil has parabolic camber and no thickness. The maximum camber is 4% of the
chord. Use linearized theory to answer the following:

α

L

U

(a) At what angle of attack � is there no lift on this foil?

(b) What is the maximum horizontal perturbation velocity when ��� � ?
(c) What is the inception cavitation number when �"� � ?
(d) What is the inception cavitation number when ��� 5 � ?

Lifting Surfaces problems continued next page
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L6. The centerboard of a certain yacht is modeled as a two-dimensional hydrofoil. If the upper
and lower surface of this symmmetric foil are parabolas given by:

� � � � � � ��,� � 0>6 � � � � ; � � 6 � � 0 � � 6 � ; �1� � �"� � � � � � � � ;

x

y

b
b

-L/2 L/2

U = 5 m/s

Using � � � � � � � � 6 � . ,
(a) Find the source strength distribution �"� 0>� along the centerline for the above flow,
� � 5 �	6 7 .
(b) Determine a formula (in terms of an integral) for the vertical velocity F at any point
in the fluid.

When sailing upwind, the centerboard is found to move at a non-zero angle of attack � to
the flow:

x
α

(c) Calculate the lift force per unit span for the foil for (i) ���,5 � and for (ii) �"��� 5 � .

An enterprising member of the MIT sailing team suggests that better performance can be
obtained by removing the lower half of the foil:

� � � � � �*��� � 016 ��� � � ; � � �,� for ���,�

U = 5 m/s
5o

(d) (i) Repeat (c) (i) for this case.
(ii) At what angle � will the lift force begin to be negative?
(iii) At what angle � is separation least likely to occur around the foil?

Lifting Surfaces problems continued next page
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L7. A two-dimensional marine vehicle has a cross-section in the form of a half circle of radius
� =1 m:

a

U

y

x

(a) Assuming potential flow, find the horizontal - � and vertical - � forces (per unit
width) on the vehicle when it is travelling on a flat bottom with velocity � =10 m/s.
You may assume that the clearance between the body and the bottom is small and that
stagnation pressure is maintained throughout this gap.
Assume the validity of two-dimensional linearized potential-flow lifting theory for the
next three parts.

(b) The vehicle is designed also to travel away from the bottom. Estimate - � and - � for
� =10 m/s and zero angle of attack ( � =0 � ).

(c) To prepare for “landing” the vehicle slows down to � =8 m/s. What angle of attack �
must it now have to obtain the same lift as in (b)?

(d) The vehicle is also capable of “flying” upside down (say after a maneuver). Estimate
the angle of attack � the vehicle must attain to obtain the same lift at � =10 m/s.

(e) Discuss qualitatively how your answers in (a) would be affected under real fluid
flow conditions. Indicate how - � or - � might change but do not perform quantitative
calculations for the new values.

(f) Discuss qualitatively how your answers for the lifting problems above would be af-
fected under real fluid flow conditions. Indicate how - � or - � might change but do not
perform quantitative calculations for the new values.

Lifting Surfaces problems continued next page
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M. MODEL TESTING

NOTE: For all of the following problems, assume, where necessary, that prototypes operate in 15 �
C salt water (SW) and model tests are conducted in 15 � C fresh water (FW).

Ma1. The two similarity parameters most often of concern to people at the MIT Propeller Tunnel
are the # and the #. The two similarity parameters
most often of concern to people at the MIT Towing Tank are the # and
the #.

Ma2. An engineer studying the launch of a ship (sliding the hull down an incline into water)
would be interested at least in what following three dimensionless flow parameters? During
the initial instant of water impact, the most important parameter is probably
the . After some time, it is known that wave effects are of primary con-
cern and the experiment must maintain similitude. In a 1:10 length scale
experiment ( �A� � � 6 ��� =10); the entry velocity of the model must scale with
��A = . The time scale is

� A = ; the peak impact pressure
on the hull is scaled by �;A = ; and the force by -'A = .

Ma3. A floating body of dimension � undergoes oscillatory motion of amplitude C and frequency� . If the fluid density is � , its kinematic viscosity � , and the gravitational acceleration is � ,
identify by name and expression (in terms of the variables above) the relevant similarity
parameters for this problem.

Ma4. The volume flow rate � of a certain pump is governed only by the fluid density � , the angular
velocity of the shaft ( , and the power rating

�
of the motor. The independent dimensionless

parameter(s) governing this problem is(are) .
Keeping all else fixed, an increase in � by a factor of 2 will require an increase in the power�

by a factor of .

Ma5. The pressure difference
�
� created by a certain pump is governed only by the volume flow

rate � , the fluid density � , and the angular velocity of the motor ( . Determine the indepen-
dent dimensionless parameter(s) governing this problem. Keeping all else fixed, an increase
in � by a factor of 8 will obtain a change in

�
� by a factor of .

Ma6. Both Froude and Reynolds similitude for flow past a ship can in principle be obtained if
experiments can be performed in superfluids ( � � $�(� � ) or on spaceships ( � � $� � � ). For
a 20:1 model scale ( �A  � � 6 ��� =20), we need (a) � A = if � A!��� , or (b)
� A = if � A!� � . For (a), the velocity scale ��A = and the
force scale -'A = ; for (b), the velocity scale ��A = and the
force scale -'A = .

Ma7. A 6:1 ship model is used to determine the resistance due to waves. (a) If the prototype
ship speed is � � =10 m/s, the model speed should be ��� = m/s. (b) If the
power required to drive the model is

� � =10 . W (W = Nm/s), the power requirement for the
prototype is

� � = W. (c) If the maximum wave pressure on the model is
measured to be ��� =10  N/m � , the prototype maximum pressure would be
� � = N/m � .

Ma8. A computer programmer wants to create a replication of the flow around a ship (“P”) for
an animated movie (“M”). She has taken 13.021 and knows that Froude and Reynolds num-
bers can not both be scaled easily in the real world, but she wants to do this in the com-
puter. If � A  � � 6 � � �9� � � � and � A  � � 6 � � =1, then �'A = , and ��A =

. Keeping all other parameters the same, the water droplets in her movie
appear too big relative to the ship. To fix this, and assuming �;A =1, she needs to change the
value of the fluid property (“ � ”) in the movie and ��A = .
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M1. A low-speed, unstaffed research submarine is designed in such a way as to maintain a lam-
inar boundary layer over as much of the hull as possible. It is 3 meters long and designed to
operate in 15 � C sea water at 0.5 m/s. A 1 m model is build to determine the drag character-
istics.

(a) What speed should the model be tested at in 15 � C sea water?

By adjusting the ballast, the model is given various amounts of buoyancy and released at
the bottom of the ocean. After terminal velocity is reached, the speed of ascent is measured.
The results are as follows:

Terminal
Velocity
(m/s)

Buoyancy (N)
0 1 2 3 4 5 6

0

0.5

1.0

1.5

2.0

(b) What is the drag of the full-scale submarine at design speed?
(c) What is the advantage of this “pop-up” test over a conventional test in a propeller
tunnel?

M2. A 1/20 scale model hydrofoil has a span of 0.5m and a planform area of 0.05m � . It is being
tested in a variable pressure propeller tunnel (FW, 15 � C) at its design angle of attack with a
flow speed of 7 m/s.

(a) The measured lift is 400 Newtons. Find the lift generated by the full-scale prototype
(SW, 15 � C) at 9 m/s.
(b) The measured drag is 36 Newtons. What is the best estimate for the drag of the full-
scale prototype at 9 m/s?
(c) When the static pressure in the test section is reduced to 1.5 x 10  N/m � , the foil
begins to cavitate. If the full-scale prototype is to operate 4 meters below the surface, at
what speed will cavitation occur? (Use

�
� � � K K � � 6 � � for FW at 15 � � ;

�
� � � � � � � 6 � �

for SW at 15 � � .)

M3. A hydrofoil is to operate at 40 knots. A 1/30 scale model is tested in a propeller tunnel at 10
m/s.

(a) If the measured lift on the model at design angle of attack is 5000 Newtons, what is
the lift on the full-scale prototype?
(b) The maximum achievable lift coefficient on the model is 2.2. Would you expect
the maximum lift coefficient at full-scale to be less than, greater than or equal to 2.2?
Explain.

M4. A propeller operating at 120 rpm powers a container ship at 22 knots. The propeller diam-
eter is 7 meters, and the shaft centerline is immersed 5 meters below the surface. A model
propeller is to be tested in a cavitation tunnel at 1200 rpm. The model’s diameter is 0.3m. In
order to match the cavitation number at the shaft centerline, what should be the pressure
in the propeller tunnel at that location?
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M5. A naval architect suspects that a ship’s propeller will cavitate due to the ship’s wake field.
In order to investigate this possibility, he conducts a “self-propelled” test on a 1/100 scale
model in a vacuum towing tank (15 � C FW). The ship is 200 meters long and has a design
speed of 20 knots in 15 � C sea water. Its wetted surface area is 10000 m � .

(a) What is the correct towing force? (Assume that simulator drag is negligible.)
(b) What should be the “atmospheric pressure” above the towing tank?

M6. A submarine is extremely deeply submerged. Its propeller operates at 100 rpm when the
ship is running at a cruise speed of 20 kts.

(a) If the shaft speed is increased to 200 rpm, will the sub’s speed be greater or less than
40 knots? Explain briefly.
(b) If the submarine were less deeply submerged, is there any effect which might mod-
ify this result? Explain.

M7. The resistance of a 300 m oil tanker moving at 17 knots is to be determined by towing a 1.5
m model in the MIT towing tank. The ship’s wetted surface area is 20000 m � .

(a) Determine the speed at which the model should be tested.
(b) The measured drag is 1 Newton. What is the predicted full-scale drag?

M8. An over-ambitious yacht designer wishes to scale surface tension forces, inertial forces and
gravitational forces simultaneously.

(a) Form a non-dimensional number which represents the ratio of surface tension
forces to inertial forces. This number should be expressed in terms of a velocity � ,
a length � , surface tension coefficient

�
and density � .

(b) The designer wishes to measure the forces on a 1 meter model of a 10 meter sailing
yacht. The yacht is to sail in uncontaminated 15 � C sea water. The model is to be tested
in 15 � C sea water which is contaminated with a surfactant which changes the surface
tension, but not the density. What is the correct value of model-scale surface tension?

M9. The proposed design for a knotmeter consists of a device which measures the frequency of
the vortices shed from a 10 mm diameter circular cylinder placed normally in the flow.

(a) Determine the frequency signal that would correspond to a speed of 10 knots.
(b) Over what flow regime is this device approximately linear (speed proportional to
frequency)?
(c) If this device is used at speeds beyond this range, will the linear calibration still be
approximately correct? Explain.

M10. A circular cylinder of diameter 1 meter and length 10 meters oscillates normal to its axis in
20 � C fresh water. Its velocity is given by

� �,� � K � � 7 � � 3 � m/s.

(a) Estimate the hydrodynamic force exerted on the cylinder when � � K 6 7 .
(b) Estimate the hydrodynamic force exerted on the cylinder when � � � � � K 6 7 .
(c) If this cylinder is held stationary in a steady current of 0.3 m/s, what is the frequency
of the unsteady lift force?

M11. To stay within her budget, the producer of “The Poseidon Adventure” wants to film the
storm scene in a towing tank. If her model is built to a 1/100 scale, and she wishes to show
the film at 24 frames per second, at what speed should she run her camera?

M12. A ship designer wishes to investigate the seakeeping performance of a 200 meter ship by
testing a 2 meter model in a towing tank.

(a) The full scale waves have a wavelength of 100m and a wave height of 3m. What
should the wavelength and wave height of the waves used in the model test be?
(b) An accelerometer is mounted on the bow of the model. If the amplitude of the
measured acceleration is 1/4

�
, what is the acceleration of the full scale ship?

(c) What is a good estimate of the ship’s acceleration in waves 100m long and 1.5m
high?
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M13. A 250m surface ship is to operate at 20 knots in 15 � C sea water. Resistance testing is to
be performed in 15 � C sea water using a 7m scale model. The ship’s wetted surface area is
10000 m � .

(a) Determine the speed at which the model should be tested.
(b) The measured drag is 70 Newtons. What is the predicted full-scale drag?
(c) A shaft bossing on the model experiences vortex shedding at a frequency of 5 Hz.
Determine the frequency of vortex shedding on the prototype ship.

M14. A new submarine design has to be tested by means of a model (M) one-fourth the size of
the prototype (P), i.e., �A  ���	6 � � � � 6 � . Assume that a proper design has eliminated the
concern for cavitation.

(a) When the vessel is operating near the free-surface and wave effects are important,
what similitude must be observed? For the same model and prototype fluid properties
and gravity � , determine how the velocity

�
, time

�
and forces - should be scaled.

(b) Repeat (a) for the case where the submarine is deeply submerged.
(c) In general, for exact dynamic similitude, both (a) and (b) must be observed and a
different model fluid must be used. Find the required � A ��� ��6 � � .
(d) Can you think of a fluid that may have the proper � A ?

M15. A rectangular barge with submerged dimensions 100m x 20m x 5m is to operate in the North
Atlantic Ocean (water temperature 5 � C) at a speed of 10 knots. A 100:1 scale model is tested
at the MIT towing tank (water temperature 25 � C).

100 m

5 m

20 m

A

(a) At what speed should the model be towed?
(b) If the drag force on the model at that speed is 0.80 Newtons, determine the drag
force (in N) and the “EHP” (in Watts = Nm/s) of the barge. You may ignore roughness
of correlation allowances for this calculation.
(c) To determine the structural load, a pressure gauge is mounted under the hull (at A).
If the measured pressure is 500 N/m � , what is the full scale pressure at that point?
(d) When the model speed increases beyond 2m/s, cavitation is observed to begin un-
der the sharp edge of the bow. At what speed do you expect this to happen for the
barge? (

�
� � � .)
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M16. To evaluate the transient slamming behavior of a ship bow (typical draft % �45 � , vertical
velocity

� � 5 �	6 7 ), a 2-D 1:10 scale model is tested in the laboratory.

H

V

(a) Identify the two most important similarity parameters for this study. Justify your
answer.
(b) How should the model and prototype velocity

�
and time

�
be scaled?

(c) In a certain test, a transducer on the bottom of the model records a maximum pres-
sure of � � � � 6 � � . What is the expected maximum pressure on the actual ship?
(d) When dropped at a given oblique angle, a restoring moment per unit length of hull
of 100 Nm/m is measured. Calculate the prototype value for this quantity.

M17. One occasionally sees model ships used in the movies. Despite the best efforts of the spe-
cial effects people it is always clear that models are being used. This can be detected by
observing the spray associated with breaking waves (e.g. the bow wave of the ship). Let � �
be the length of the full scale ship and

� � be its speed. The available model ship has length
0.01 � � .

(a) What speed is appropriate for the model if the wave pattern is to scale correctly?
Why did you select this scaling rule?
(b) The formation of spray is governed by the balance between inertial and surface
tension forces. The fluid surface tension is � (in N/m) for both full-scale and model.
What is the ratio of apparent model surface tension to full scale surface tension if the
scaling is done as in (a)?
(c) According to your result in (b), will the model droplets be too large or too small?
Why?

M18. It is proposed that the steady longitudinal drag force on an automobile be measured using
a geometrically-similar 1:5 length-scale (i.e., �A 4� � 6 ��� =5) model in a towing tank filled
with fresh water.

(a) State the condition(s) required to ensure dynamic similitude between the prototype
and the model.
(b) If the prototype speed is � � =36 km/hr � 10 m/s, at what speed ��� should the
model be towed?
(c) At the speed in (b), the drag force on the model is measured to be -�� =10 N. What
is the force - � on the prototype automobile (in air)?
(d) Due to a soft suspension, the prototype heaves noticeably at a frequency near � � =2
rad/s. At what frequency � � should the model be moved up and down to achieve fluid
dynamic similitude for this effect?
(e) It is pointed out that the presence of surface waves in the towing tank (an effect
absent in the prototype) may distort the force measurements. In order to keep this
effect due to gravity less than �B� � 5 � %, how deep should the tank be for a model that
‘runs’ on the tank bottom?
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M19. An offshore construction company thinks there is an easy way to start the driving of a pile
into the seafloor in deep water. The idea is to simply drop it vertically from the surface.
The geometry of the pile is approximately a cylinder, tapered at both ends, length � and
diameter * ( �*6 * =5) (surface area � � � *!� ; cross-sectional area C = � * � 6 � ; �'6 C � 20),
as shown. The average density of this (concrete) pile is � �+� K � � � � � � . The key issue for the
success of this concept is the vertical velocity

� � at which the pile hits the bottom. To test
this idea, a model of length ��� =5 cm is used and the bottom velocity

� � � is measured.

L

D

(a) Obtain a formula for the total drag coefficient (based on � ) � � in terms of
� � .

(b) The experiment is repeated for the model with and without a turbulence stimulator
ring on the “nose”. Despite observed turbulent conditions along the entire model for
the tripped case, the measured

� � � is found to be almost the same for both cases, with� � ��� 2 m/s. Explain why this can be so from the fluid mechanics point of view (i.e.,
assume the measurements are correct).
(c) Using the measured

� � � value above, find the total drag coefficient � � � of a pro-
totype pile of length � � = 5 m. For this calculation, you may assume that the prototype
Reynolds number (based on � and

� � ) is � �B� � � � � . State the key assumption(s) used.
(d) What is the bottom velocity

� � � of the prototype pile?
(e) In order to understand the physics involved, a laser system is set up to measure the
velocity profile in the wake of the prototype pile (shown below in a frame fixed with the
pile). It is found that pressure gradient effects are small for this slender geometry, and
that the extent of the wake is approximately given by the momentum thickness G � �� at
the end. What is the cross-sectional area C < of this wake?

L

Vb

Vw

(f) It is found that the velocity profile inside C < can be approximated by a constant
� <

(see figure). For any given value of the total drag coefficient � � (defined above), the
ratio of �  � <�6 � � can be calculated. Obtain a formula/equation for � in terms of � �
and the ratio �'6 C < .
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P. POTENTIAL FLOW

Pa1. A body in a uniform stream is modeled by sources and sinks of strengths �"� , i=1,2,... The
body will be closed [if] [only if] [if and only if]

�
� �	� =0.

Pa2. For a given (2D) flow, if a � does not exist, the flow must be [rotational, irrotational, com-
pressible, incompressible, impossible]; if a � does not exist, the flow must be [rotational,
irrotational, compressible, incompressible, impossible]; if neither a � nor a � exists, the
flow must be [rotational, irrotational, compressible, incompressible, impossible].

Pa3. A certain potential flow is given by �'� 01� � � = � 0 � ��0 � � � � . The constant � must be equal to
. and the stream function for this flow is � � 01� � � = .

Pa4. For the following 2D ‘flows,’ complete the missing entries. Mark “n/a” if an answer is not
applicable or does not exist: (don’t forget +C!)

E F � �
0 � ��0 �B� � �

� � � � ���
� � �1� 0�� � � � � �1� 0!� � �
� � �1� 0!� � � � � �1� 0 � � �

Pa5. When neither a velocity potential nor a stream function for a flow exists, the flow must be
[impossible] [irrotational] [rotational] [viscous] [inviscid] [compressible] [incompressible]
[turbulent] [undefined].

Pa6. A 2D potential flow is constructed with:

1. a uniform stream of � �� � � = � � � � );
2. a point source of strength � at � � � � � ;
3. a dipole of moment � � oriented in the �*0 direction at � � � � � ;
4. a dipole of moment � � oriented in the �0 direction at � � � � � � ;
5. a point vortex of circulation � � at � � � � � ; and
6. a point vortex of circulation � � at � � � �*� � .

The velocity potential is given by �'� 01� � � = .
The horizontal velocity at C =(2,0) is E & = .
The vertical velocity at � =(0,1) is F ( = .

Pa7. In an interior corner flow, a particle travelling along the wall has a speed which increases
as the fourth root of its distance from the corner � E � � # �  � . The angle of the corner is
G � � radians.

Pa8. The exterior flow around the corner of a rectangular house with two walls located at 90 � and
180 � meeting at the origin may be modeled by potential flow with � = .

Pa9. In a certain corner flow, a particle travelling along the wall has a speed which increases as
the square root of its distance from the corner (i.e. E � � # � � ), the angle of the corner is
G � = .

Pa10. Two walls are placed along the the positive 0 and the negative � axes to partition the flow
into an inner and an outer region. The general expression for the potential for the interior
corner flow is , and for the exterior corner flow is .

Pa11. If a two-dimensional Rankine half-body placed in a flow of 10m/s is to have an ultimate
height far downstream of 1m, the source inside the body must produce a volume flux of

m � /s.

Pa12. A small rupture in an underwater storage tank causes an insoluble neutrally-buoyant fluid
to be discharged at a volume rate of � = � � m . /s. If the current at that location is � =1m/s,
the three-dimensional plume can be detected m upstream of the leak.
Far downstream, the affected region will be of the form of a circular cylinder of radius

m.
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Pa13. A pipe discharges an insoluble pollutant at a volume rate of � =� m . /s into the middle of
a river with a flow rate of � =4m/s. If the river is deep, a three-dimensional plume will
be created which extends a distance of m upstream and has a radius of

m far downstream. If the river is shallow, a two-dimensional plume will
be created. If the river depth is 1m, the 2D plume will extend a distance of m
upstream and has a width of m far downstream.

Pa14. The velocity potential � at � 01� �>� � � due to a three- dimensional source of strength / located
at � � � � � � � is: . If the velocity at a point � � 5 m from the source
has a magnitude of 1m/s, the value of / = .

Pa15. The flow around a two-dimensional body in a uniform stream � �� � � can be modeled by the
following internal singularities: a dipole of moment � oriented in the � 0 direction located
at � � � � � , a source of strength � at � � �;� � � , a sink of strength � at � �*�;� �*� � , and three vortices
of circulation

�
each located respectively at � �;� � � , � � �;� � � 5 � � , and � �*�;� �*� � 5 � � . The vertical

velocity at the point (-a,0) is F = .

Pa16. A sphere of radius � is placed a distance
�

above a wall. In order for the method of images
to apply, the following must hold: [

� � � ] [
��� � ] [

�
� � ] [any � or

�
]. If the same sphere is

centered vertically between two infinite horizontal flat plates, the number of image spheres
needed to satisfy exactly the boundary conditions on the flat plates is .

Pa17. A pair of two-dimensional point vortices both of circulation
�

are placed at points � 01� � � = � � � � �
and � � � � � � . If there is a wall on � =0, the total vertical force on the vortex at � � � � � is - � = � .

Pa18. A pair of point vortices, both of circulation
�

are placed at points � 0'� � �� � �+� � � � and � � � � � .
If there is a wall on � � � , the total vertical force on the vortex at (1,1) is - � 6 � � .

Pa19. A two-dimensional dipole of moment � and oriented in the negative 0 direction and a two-
dimensional point vortex of circulation

�
are both placed at ( �*� � ) in a corner formed by

two walls 0�� � and ���%� . Draw a picture (only) to symbolically identify the orientations
and locations of all the singularities in order to satisfy the necessary kinematic boundary
conditions. Identify (with an � in the picture) the point of maximum pressure in the flow.

Pa20. A sphere of radius � and origin at � � � � � � � is placed in a uniform stream � �*� � � � � . If ��� is
the hydrodynamic pressure far away, the maximum pressure on the surface of the sphere
is ���*= � = . The minimum pressure on the surface of the sphere occurs
where the tangential velocity is equal to and is given by
���*� �"� . At a point directly upstream � �	� � � � � , the magnitude of the ve-
locity is � 6 � , so ��6 � = .

Pa21. A flying device with speed H� = � � � � � � � ��� � deploys a combination of wings and flaps to gen-
erate the following three circulations: H� # = � � # � � � # � � � # � � ; H� � = � � � � � � � � � � � � � ; H� . = � � . � � � . � � � . � � .
Assuming otherwise potential flow, the transverse force on the plane is given by - � = .

Pa22. A 2D potential flow past a body is represented by a uniform stream � �� � � = � � � � � and a sys-
tem of internal singularities:

type strength location orientation

source/sink 1 � � � � � —
source/sink � 1 � � � � � � —

dipole 2 � � � � � � 0
vortex 3 � � � � � —
vortex � 2 � � � � � —

The force on the body is given by - � 6 � = ; - � 6 � = .

Pa23. A circular cylinder of radius � is fixed in an accelerating fluid, density � , with horizontal
velocity given by �B� 3 � . The force on the cylinder (per width) is - � = , and
- � = . If a horizontal wall is placed some distance below the cylinder, - �
should [increase] [decrease] [not change], and - � should [increase] [decrease] [not change].



13.021 Supplemental Problems . . . . . . . . . . . . . . . . . . P. POTENTIAL FLOW . . . . . . . . . . . . . . . . . . Page 31

P1. A 2-D source of volume flux � in a fluid of density � is a distance � from a rigid wall of infinite
extent.

a

a

P

(a) Calculate the velocity at point P.

(b) How does the pressure at point P differ from that at an infinite distance from the
source?

(c) If there is now a freestream of velocity � �*� � � , what would the volume flux of the
source have to become for the same results in (a)?

P2. The Flettner Rotorship was propelled by cylindrical rotors which were turned about their
axes. The flow about these rotors can be approximated by two-dimensional flow past a
dipole/vortex combination as shown:

RU

y

x

Γ

(a) Write down the appropriate velocity potential for a rotor of radius 8 with circulation�
in a streaming flow of velocity � .

(b) Find the angular position of the stagnation points on the cylinder surface.
(c) What is the magnitude and direction of the total aerodynamic force on a rotor of
length � ?
(d) Find the stream function for this flow.
(e) Find the positions of the dividing streamline when at a distance of � � 8 away from
the origin.
(f) A certain marker particle is observed to pass directly under the cylinder at a distance
of � 8 (i.e., through the point � 01� � �� � � � �*� 8 � ). At what distance will the particle cross
the 0 -axis?

P3. A hemi-spherical oil storage tank of radius � is located on the ocean bottom in the presence
of a uniform current � , as shown. The pressure beneath the tank is equal to the hydrostatic
pressure at that depth. Calculate the total vertical force exerted on the tank by the fluid. The
answer may be left in terms of a definite integral.

U aρ
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P4. A rough estimate of the drag of a bluff body in real fluid flow may be obtained by assuming
that the pressure on the body forward of the separation point is that predicted by potential
flow theory, whereas the surface pressure downstream of the separation point is constant
and equal to either (A) its predicted value at the separation point, or (B) the value at infinity.
Assuming that separation occurs at the midpoint of a circular cylinder, use this theory to
estimate its drag coefficient � � using the two assumptions.

WakeU

P5. A circular cylinder of radius 8 is in an invsicid steady streaming flow of speed � . A small,
neutrally buoyant “marker” particle is placed in the flow far upstream of the cylinder at a
distance 8 above the dividing streamline.

U x

y

RR

initial
position

(a) How far from the cylinder is this particle when it passes the � -axis?
(b) What is the speed of the particle at that point?
(c) If a circulation of strength

�
is imposed on the cylinder, what are the answers for (a)

and (b)?

P6. A stationary sphere of radius 8 is held in an unsteady streaming flow of velocity �B� 3 � .

R
U(t)

(a) Assuming potential flow, find the pressure differential between the forward and aft
stagnation points.

In order to measure the acceleration of the flow, a straight small-diameter pipe is run be-
tween the stagnation points.

U(t) rp

(b) Assuming that the flow within the pipe is laminar and assuming that the presence
of the pipe does not affect the potential flow outside the sphere, find the coefficient
of proportionality between the volume flux � through the pipe and the acceleration
I �*6 I 3 .
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P7. The flow around a rotating cylinder may be approximated as that near a 2D point vortex of
circulation

�
at its origin

�
.

(a) Given the fluid density � , determine the magnitude and direction of the force on the
vortex

�
.

P

Γ

y

xU

(b) For the two vortices below, determine the magnitude and direction of the velocity
induced by

� �

at
�

.

P

Γ

y

x

Γ

P’

a

(c) Determine the magnitude and direction of the force on the vortex
�

in the situation
of part (b).

Consider the vortex inside a 90 � corner:

a

a

P

Γ

(d) Write down the potential �1� 0'� � � for this flow.
(e) Calculate the magnitude and direction of the force on

�
.

P8. The lift on the windshield of a car is modeled as a steady two-dimensional potential flow:

144o= 4π /5

B A

C

1

(a) Write down the general solution for the velocity potential � for this flow.
(b) If the horizontal velocity at A is E � �+� � � 5 , calculate the radial velocity F A along

�� �
as a function of radial distance � .
(c) Find the pressure distribution along

�� � in terms of the stagnation pressure
� : at B.

(Ignore gravity.)
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P9. A steady uniform stream of fluid density � and velocity � flows past a 2D circular cylinder
of radius 8 :

U

y

x
ro θ

(a) Calculate the potential � and force - on the body.
(b) Calculate the tangential velocity F � � G � on the surface of the cylinder. Find the loca-
tions and values of the maximum and minimum values of � F � � .

In order to create lift, a small sharp fin is attached to the cylinder at GB�,G � :

U

y

x
ro

θo

(c) Repeat parts (a) and (b) for this flow (give your answers as a function of G � ). Sketch
the streamlines for this flow.

P10. A “flow generating device” placed at the origin in a free stream creates a two-dimensional
flow given by the following velocity potential:

��� � 0 � �� � � �1� � �'� �

� � G
Calculate the force exerted by the fluid, density � , on the “flow generating device.”

P11. A plane with very long wing span (i.e. you can assume two-dimensional flow) is designed to
create a constant amount of circulation

� � regardless of the forward speed.

(a) What is the lift � on the plane when moving at a horizontal speed of � ?
(b) What lift � will the plane generate when flying at horizontal velocity � at a distance�

above the ground?

A dare-devil pilot flies the plane towards a cliff and finds that by controlling the throttle he
can hold stationary at a point � � � � � with respect to the base of the cliff due to a strong draft
down and away from the cliff(i.e. corner flow):

(h,h)

x

y

(h,0)

(c) If the corner flow (only) produces a wind which has a horizontal component of ���
in the vicinity of the plane, what is the ground wind velocity at a point directly below
the plane, i.e. at � � � � � ?
(d) Find the weight of the plane 
 in terms of ��� , � � and

�
.

P12. We saw in lecture that a dipole is the result of combining a source and a sink in a special
way. Show by a similar process that, in two dimensions, a pair of point vortices can also be
used to make a dipole.
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P13. A circle of radius 8 is placed a distance
�

from an infinite wall;
� � 8 . There is a streaming

flow from left to right of magnitude � .

U
ro

B

A h

(a) Write the potential function for this flow.
(b) Show that the flux of fluid, � between points C and � is :

� � # � 	��# � � ���
' � ��� +

P14. A circle of radius � with its center a distance
�

( 	  � 6 � � � ) above a horizontal wall (��� � )
is placed in a uniform stream � �*� � � � � .

(a) Write down the potential � for this flow in terms of 0'� � (not � � G ).
(b) Calculate the leading order velocity due to the image � E � � F � � in the vicinity of the
circle ( 0�� �B� � � , �!� � � � � ).
Note: For 	 � � , leading order means dropping all higher-order terms in 	 . Thus if the
answer is �B� � � , then drop all terms of �B� 	 � 	 � � � � � � ; if the answer is �B� 	 � , then keep that
and drop all terms of � � 	 � � 	 . � � � � � ; etc. ( 
��  ��� Keeping every term dimensionless will
make the order of these terms obvious.)
(c) From (b), show that the image velocity at the circle is (i) effectively horizontal ( F � �E � ); and (ii) E � is almost constant and can be represented to leading order by its value
at the center of the circle.
(d) Using the result of (c) and evaluating the total horizontal velocity,(i) show that
� � �;� � � are no longer stagnation points; and (ii) find the new stagnation points’ posi-
tions

� 0>: .
(e) Using the result from (b) and examining the horizontal image velocity E � at � � � � � � � ,
deduce qualitatively whether the vertical force on the circle due to the presence of the
wall would be zero, positive or negative.

P15. A two-dimensional ideal flow has a stream function: � � � � G ������ � �*G+��� � � �A � � ��� .
(a) Show that the stream function satisfies the boundary condition for a fixed body
coinciding with the circle �B� � .
(b) Find the positions and values of the maximum and minimum velocities on this
body.
(c) Find the maximum pressure difference

�
� between any two points on this body.

(d) What is the volume flux between the two points � �"��� � G���� � � � and � �"�J� � G��
� � � � ?
(e) At what point C represents a streamline that gives half of the flux rate obtained ini
part (d)?
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V. VISCOUS FLOWS

Va1. A two-dimensional cylinder of radius � � is accelerated in an infinite ideal fluid at � �	6 7 � .
At the same time, the fluid is accelerated against the cylinder (in the opposite direction)
at � �"6 7 � . Assuming potential flow, the total force on the cylinder is .
If both the fluid and the cylinder have ceased accelerating, and the flow is moving steadily
against the cylinder at a constant velocity of � �	6 7 , the drag on the cylinder per unit length is
approximately (a) assuming potential flow and (b) considering real fluid
effects .

Va2. The drag coefficient of a sphere [increases] [decreases] as its velocity increases past a crit-
ical value corresponding to a Reynolds number of roughly because the
boundary layer becomes . The exact critical value depends on
and so that in a crude laboratory test that value is usually [lower] [higher]
than the theoretical value.

Va3. A smooth solid metal sphere of radius 1 m and density �;: =2 � � � � � � is released in the ocean.
The initial acceleration of the sphere is m/s � . After a long time, the ve-
locity of the sphere would be . If the body is flattened into a circular disk
of radius 1 m and thickness 1 mm, the final velocity would be , if it falls
perpendicularly (horizontal disk). If the body is in the form of a square plate of side 1 m
and thickness 1 mm and is forced to fall parallel to the flow (vertical plate), the final velocity
would be .

Va4. A person drinks from a 300 cc can of soda (density �� water) through a straw 4 mm in diam-
eter and 20 cm in length. If he has to finish the soda in 1 minute, the pressure difference

�
�

he needs to maintain (ignoring gravity) is . If the diameter is now only
2 mm, for the same

�
� , the time required to finish the drink becomes .

(Assume laminar flow throughout.)

Va5. A ship has a heaving velocity given by � � � � � � � 3 � where � � =2 m/s and � =2 rad/s. Considering
a large flat plate on the side of hull and assuming laminar flow, the fluid velocity will have
an amplitude of � � that of the ship a distance away from the hull. The
maximum skin friction drag on the hull occurs at � 3 = and amounts to

N per square meter of plate. The flow can be considered to be ‘separated’
from the plate at � 3 � � � � � .

Va6. The shell of a space capsule of thickness � �J� � � � is punctured leaving a long cylindrical
hole of radius ��� � � �  � . (a) If the interior of the capsule is air pressurized at

� �%� � � � � ,
and the exterior is vacuum; calculate the volume rate � at which air leaks out of this capsule.
(b) After some time, the hole increases to a radius of � � , if the flow rate remains the same,
find the interior pressure

�
at this time.

Va7. A flat plate 1m long by 0.1m wide (a “snowboard”) slides at a velocity of � =1 m/s on a
fixed flat surface trapping a layer of water of thickness 0.001m between them. Assum-
ing laminar flow of the water in the gap, the total frictional force on the sliding plate is
- = . It is argued that - can be changed by applying a force on the front or
back of the plate thus inducing a pressure gradient in the trapped fluid. - can thus be com-
pletely cancelled when the pressure difference in the fluid ��� � � � � ��� � � � � = .

Va8. A designer can smooth a flat plate, length � , and (try to) keep the boundary layer LAMINAR
as long as possible, or add a tripwire at the front edge to make sure that the boundary is
TURBULENT over the entire plate. To minimize the friction drag * on the plate, it is useful
to add the tripwire only if the Reynolds number based on � is [greater] [less] than � � =

.

Va9. A flat plate of dimensions 1m � 1m by 0.01m thickness is dropped vertically (parallel to the
flat sides) in water. If the density of the plate is twice that of water, the maximum velocity the
plate will attain is � = . At that speed, the displacement thickness near
the trailing edge of the plate is 2 � = . It is found that the plate is welded
together horizontally in the middle. This should not affect your answer above if the weld
height

�
is much less than .
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Va10. To model hydroplaning of a car on a wet road, it is assumed that the tire has a contact area
of 0.2m � 0.2 m gliding over a layer of water of constant thickness of 10 �  m. If the wheels
are locked and the speed of the skidding car is 30m/s, assuming laminar flow and otherwise
no pressure gradients, the total ‘frictional’ force on each wheel is .

Va11. A horizontal pipe of length � and radius � ( � � � ) drains water into open air from a reser-
voir which is filled to a depth

�
above the pipe. The flow rate is � = .

The total horizontal force on the pipe due to shear stress is * = . To
double � , but keeping � constant, the radius of the pipe must be changed by a factor of

. In this case D will change by a factor of .

Va12. A vertical pipette (small hollow cylinder) of radius � is filled with a fluid (density � , kine-
matic viscosity � ) to a height of

�
. If the gravitational acceleration is � , the flow rate is given

by � = . The rate of change of
�

is given by I � 6 I 3 = .

Va13. To lubricate the gliding motion of a large box on a (horizontal) surface, a thin layer of oil
(density � , dynamic viscosity � ) is applied between the gliding surfaces. The velocity of
the box is � , and the thickness of the oil film is

�
. The velocity profile, E � � � , of the oil film

is [parabolic] [hyperbolic] [constant] [linear] [can’t tell]. The frictional drag on the box is
per unit area of the bottom.

Va14. Turbulent fluctuations affect the equations governing the mean flow in the form of Reynolds
stresses which have the general form �

�

� 
 = in terms of the fluctuation ve-
locities E �� . For a certain two-dimensional turbulent flow, E � # � � � � � � 0!� � �B� � 3 � where

�
, �

correspond to scales much smaller than the mean flow. It follows then that E �� =
so that �

�

# � = .

Va15. If
�

is the height of the typical roughness on a ship hull length, � , boundary-layer thickness
2 : [
�

], [
� 6 � ], [

� 6 2 ], [Reynolds #], [Froude #], [hull shape] must be kept the same to produce
the same drag coefficient. In a Froude experiment, model friction coefficient are usually
[lower] [higher] [the same] compared to the prototype due to roughness effect.

Va16. A large flat plate in water starts impulsively from rest to a steady speed. The velocity at
a point � �!� from the plate reaches some value � after 4 seconds. The same velocity will
be attained at a point � ��� away after seconds. If the same experiment
is repeated in a fluid with twice the kinematic viscosity, the time to reach � at � �!� is

seconds.

Va17. A ‘single-gear’ transmission for a certain car consists of two concentric cylinders of length
� , and radii 8 and 8 � �

(
� � 8 ) respectively filled with a fluid of dynamic viscosity � in

between. If the outer cylinder has an angular velocity of ( and the inner cylinder is station-
ary, the torque of the transmission in terms of � , 8 ,

�
, ( and � is . If the

transmission is suddenly engaged, the torque will not be felt by the inner cylinder until after
a time delay measured in terms of

�
, � = �'6 � , � � � by

�
� (give only the form

of the dependence, ignore constants). If an oscillatory motion of frequency � is applied to
the outer cylinder instead, the gap height has to be of the order of

�
�

(give only the form of the dependence in terms of � =�'6 � , � , � � � , ignore constants) or less for
the transmission to be useful.

Va18. Flow separation usually occurs when the velocity near the body surface is [large] [small]
[constant] [decreasing] [increasing] under pressure gradient. At the point
of separation (on the body), the velocity must be [positive] [zero] [negative], the shear stress
must be [positive] [zero] [negative], and the vorticity must be [positive] [zero] [negative].

Va19. In an old-fashioned jukebox, phonographic records (thin circular disks of radius � ) are
dropped vertically onto a turntable. Assuming steady-state and moderately large Reynolds
number, the drag coefficient for downward velocity

�
should be roughly � � = I � � �;6 � � 5 � � � � � � �

� . If the weight of the record is 
 , its terminal velocity is given by
.
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Va20. For laminar flow between two infinite plates a distance
�

apart driven by a pressure gra-
dient, the velocity profile is [constant] [linear] [parabolic] [hyperbolic] [elliptic] [error func-
tion], and the flow rate � is proportional to

�
to the power . If the flow

is driven by the top plate moving at a speed � in the absence of any pressure gradient, the
velocity profile is [constant] [linear] [parabolic] [hyperbolic] [elliptic] [error function], and
the flow rate � is proportional to

�
to the power .

Va21. If instead of the exact solution for steady laminar flow � � over a flat plate with distance 0
measured from the leading edge, we assume an approximate profile given by E � � � 0>� 6 � � =�;6 2 � 0>�
for � � 2 � 0;� and by E � � � 0>� 6 � � =1 for ���%2 � 0;� ; in terms of 2 , the displacement thickness is
given by 2 � = , the momentum thickness by G = , and
the wall shear stress by � � = . The dependence of 2 on 0 is expected to be
2 ��0 ** ; also 2 � � ** and 2 ��� ** .

Va22. The apparent increase in the diffusivity of momentum due to turbulent fluctuations ( E �� )
is given the name which is given by the formula . In
general, for turbulent flows, this effect is [greater than] [comparable to] [smaller than] that
due to viscosity except in a small region near the body called the .

Va23. In a turbulent flow, the rate of kinetic energy loss (per unit mass) 	 ( � � � F � � 6 � 3 ) depends
(ultimately) on the kinematic viscosity of the fluid � . Using dimensional analysis, the size
(say diameter) � of the typical eddy responsible for this viscous dissipation is given in terms
of 	 and � by � � ( � is the so-called Kolmogorov turbulent length scale).
Similarly, the typical velocity F � of that eddy can be obtained in terms of 	 and � to beF
� � .

Va24. A shear flow given by E � � and F � � � � becomes turbulent with velocity fluctua-
tions given by E � # = � E �� =� ��� � � � 3 6 � � � , where �

�

is a small turbulent time scale. In this caseE �. = . The viscous shear stress is � � � � � � = and the Reynolds
turbulent shear stress is � � � � � � � = . In order for these two stresses to be of
comparable magnitude at � =1, the order of magnitude of the constant � is .

Va25. Two submarines, one twice the length of the other, are manufactured using the same kind
of rivets which protrude a small distance above the body surface. In estimating the fric-
tion coefficients for the two vessels operating at the same speed, the longer submarine
should be considered overall to be [rougher than] [smoother than] [same roughness as] the
shorter submarine. If instead the shorter vessel is scaled exactly (including rivet heights)
from the longer vessel, the longer submarine should be considered overall to be [rougher
than] [smoother than] [same roughness as] the shorter submarine.

Viscous Flows problems continued next page
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V1. A two-dimensional steady velocity field of a viscous incompressible fluid of density � and
viscosity � is specified by :

E � 0'� � �� C�� C � � � � 7 3 � � 3F � 01� � �� �

x

y

y1

(a) What is the shear stress � � � � 01� � � ? � � � � 01� � � ?
(b) What is the pressure gradient

� � � 01� � � ?
(c) What is the vorticity field � � 01� � � ?
(d) What is the circulation

�
around a circular contour of radius 8 centered at the ori-

gin?
(e) What is the velocity potential �1� 0'� � � and stream function � � 0'� � � ? If either or both
of these quantities cannot be defined, explain why.
(f) What is the momentum flux across the � -axis between the origin and the point
� � � � # � ?

V2. A viscous steady incompressible fluid flow is given by:
E = � � � � � � �F = � ��I � � � � �;� � � � � I constants
� = 0

(a) Show that the equation for continuity is satisfied.
(b) Determine the constants so that the boundary conditions on stationary horizontal
rigid walls at �B� � and �B� � can be satisfied.
(c) Find the pressure field

� � 01� �>� � � associated with this flow.
(d) What is the wall shear stress � � in the 0 and � directions on �+� � ?
(e) Calculate the vorticity (vector) field for this flow.

V3. A dashpot is designed to produce a force - which is proportional to its velocity � . It consists
of a piston in a closed cylinder, as shown. The cylinder is completely filled with hydraulic oil
of viscosity �	� � � � �;6 �%�"7 on both sides of the piston. The cylinder diameter is 0.05m, the
piston length 0.1m and the gap between the piston and cylinder wall is 0.002m. Approxi-
mating the flow through the gap as locally two dimensional, what is the damping coefficient
- 6 � ?

U

0.01m
0.1 m

0.05 m

0.002 m

F
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V4. A very simple model of a laminar boundary layer on a flat plate with zero pressure gradient
is the following:

E 6 � � �;6 2 � �,2E 6 � � � � �,2
y

x

δ

U

(a) Find expressions for � � � � 2 � and G in terms of 2 � � and � .
(b) Apply Eqn. 72 of JNN chapter 3 (which satisfies the boundary layer equations in an
integral sense) to find an expression for 2 6 0 in terms of � �B� � 0>6 � .
(c) Compare this result with 2 � � � given by the Blasius solution.

V5. An approximation of the velocity profile within a two-dimensional laminar boundary layer
is: �

� ��� � 
 � � � � ,

where � is the local velocity outside the boundary layer and 2 is a measure of its thickness.

(a) Find expressions for the shear stress at the wall � � � , the displacement thickness 2 �
and the momentum thickness G in terms of 2 � � and the dynamic viscosity � .
(b) Applying von Karman’s momentum integral equation, find an expression for 2 6 0 in
terms of � �"� � 0>6 � for the case of a flat plate held in a stream of velocity

�
at zero

angle of attack.

V

y

x

(c) Again applying von Karman’s momentum integral equation, find a differential equa-
tion governing the growth of 2 vs. arc length 7 for a steady streaming flow of velocity

�
past a 2D circular cylinder.

V
s

Hint: First deduce an expression for the tangential velocity � outside the boundary layer as
a function of 7 . Do not try to solve the final differential equation.

(d) Repeat parts (a) through (c) using the linear approximation for the velocity profile
in the laminar boundary layer given by:

�
� � � �

� � �;6 2 �
Be sure to first apply appropriate boundary conditions to determine � and

�
.
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V6. A smooth thin circular pipe (radius � � and length � ) is placed parallel to a steady uni-
form stream of velocity �J� � � � 5 �	6 7 . For the following problems, use ��� � � � � � � 6 7 and
� � � � . � � 6 � . and ignore any ambient turbulence.

(a) For � � � ��� � � , estimate the displacement thickness 2 � at the exit end.
(b) Calculate the drag force on the pipe. (Do not forget the exterior surface!)
(c) Assuming that the assumptions of (a) and (b) are still valid and the longitudinal
velocity remains constant at � �D� � � 5 �"6 7 at the center of the pipe, determine how
small � � must be so that Poiseuille flow may be assumed in 90% of the pipe’s length.
(d) What is the difference between the pressures at the two ends of the tube in (c)? You
may assume Poiseuille flow throughout.

V7. Consider the top surface (only) of a smooth flat plate (length � , width � , �J� � � � � )
under a uniform flow of velocity � � � � �	6 7 . For the following problems, use �!� � � � � � � 6 7
and � � � � . � � 6 � . and ignore any ambient turbulence.

L = 1m

b = 1m

U = 10 m/s

(a) At what range of lengths 0 do you expect the boundary layer to become turbulent?
(b) If the flow is tripped at the tip of the plate, estimate (i) the displacement thickness
2 � at the end of the plate; (ii) the total drag * ; and (iii) the friction coefficient � � . (Use
the 1/7 power law.)
(c) To model roughness, spherical grains of diameter

� �%5 ��� are glued evenly over
the plate at a density of 1600/m � (average spacing = 2.5 cm). Assuming that the flow
around each grain can be approximated as that past an isolated sphere, calculate � �
for this rough plate. How does this model compare with observed data for a sand-
roughened plate?



13.021 Supplemental Problems . . . . . . . . . . . . . . . . . . . V. VISCOUS FLOWS . . . . . . . . . . . . . . . . . . . Page 42

V8. A sphere of radius 8 is placed in an accelerated flow with horizontal velocity �B� 3 �*� �>3 and
density � :

y

x
ro θU(t) = α t

A

B

(a) Assuming potential flow:
(i) Find the hydrodynamic force � - � � - � � on the sphere.
(ii) Calculate the pressures

�)&
and

�)(
at the points A and B on the sphere.

In an attempt to relieve some pressure on the sphere, a thin tube (radius � � and length � ) is
used to connect A and B:

A

B

LU

(b) If Poiseuille flow can be assumed in the tube throughout and dynamic viscosity is �
(you may assume � � � � � 7 3 � � 3 for the following):
(i) Find the flow rate � and its direction through the tube.
(ii) Obtain formulas (but do not evaluate any integrals) for the force � - � � � - � � � on the
sphere due to the presence of the tube.

V9. A solid sphere of radius � and density � : is held in a fluid of density � , where ���%� : , and
kinematic viscosity � under a gravitational field � . At time 3�� � , the sphere is released.

(a) Find the initial acceleration I �*6 I 3 � 3�� � � � of the sphere. [Hint: Do not forget added
mass.]
(b) At 3� � � , the velocity � of the sphere is still zero. Find the dynamic pressure

�
� � G �

on the surface of the sphere at this instant.
(c) Determine the maximum velocity

�
�*= � that the sphere will eventually attain as a

function of the drag coefficient � � of the sphere. Estimate
�
�*= � for (i) a very small

sphere; (ii) for a large sphere. Explain how large/small the radius should be in (i) and
(ii) for the results to be valid.
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V10. Radioactive water is leaking out through a long K �>� high hairline crack in a 10cm thick wall
of a pressurized vessel. If the pressure inside is � � � � 6 � � higher than atmospheric pressure
outside:

(a) Calculate the maximum flow velocity � �= � inside the crack.
(b) Calculate the volume rate per length of crack, � at which the water is leaking out.
(c) Some time later, the crack becomes twice as high but the pressure difference has
dropped by half. Find the new flow rate � .
(d) In the aftermath of the accident, an expert witness speculates that the shear stress
due to the flow can contribute to the widening of the crack. Under the conditions of
(a) and (b) above, what is the shear stress � � on the sides of the crack? What is the force
per unit length of crack, - , due to the shear stress?

V11. Plane Couette flow occurs between two infinite planes located a distance
�

apart. One plane
moves with a speed � with respect to the other, but a blockage causes the net flux of fluid to
be zero.

h

y

x

U

(a) Formulate the governing equations used for this problem, stating clearly the as-
sumptions used.
(b) Find an expression for the pressure gradient for 016 � � � .
(c) Sketch the velocity profile for 0>6 � � � .

V12. For ordinary Newtonian fluids, we have a good fit to experimental data using the turbulent
velocity profile: �� � � ��� � ' � � �� + � � �
There has been interest in additives which alter the character of the fluid (making it non-
Newtonian) for the purpose of reducing drag. For some additives, we find the velocity pro-
file may be fit reasonable well by: �� � � ��� � ' � � �� + � � � �	�
where � is a constant. Derive an equation giving friction coefficient vs. Reynolds’ number
for this fluid. You needn’t solve the equation but verify that it recovers the usual Newtonian
result for �4� � .

V13. A certain body is shaped so that the potential flow solution for velocity tangent to its surface
is given by:

� �  ��
�
� � � �

where � is a constant characterizing the curvature of the body and � � is the free stream flow
velocity. It is proposed that the laminar boundary layer profile be approximated as:


�� ���
# � � �� !

(a) Is this a feasible approximation for the profile? Why/why not?

Suppose the given profile is used.

(b) Find an expression for the displacement thickness as a function of 2 � 0>� .
(c) Find an expression for the momentum thickness as a function of 2 � 0;� .
(d) Find a differential equation for the growth rate of 2 with 0 in terms of � � � 2 � 01� � and
� only. (Do not try to solve this equation.)
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V14. A simple model for a hydraulic clutch is as a pair of parallel discs, one rotating with respect
to the other with angular velocity ( . They are separated by a thin gap filled with fluid. The
geometry is sketched below:

r
Θ

Ω

z

spinning 
disc

stationary
disc

fluid gap

h

R

Side
View:

z

The Navier-Stokes equations in cylindrical coordinates are:
� F A� 3
���

�
� F A�
�
� F �
�

� F A� G
���

�
� F A� ���

F ��
����� ��

� �
�
��	��
 �

�

�
�
�� �

� F A�
��� � �

� �
� � F A� G �

� � � F A� � � � F A
� � � �

� �
� F �
� G�� ,

� F �
� 3
���

�
� F �
�
�
� F �
�

� F �
� G
���

�
� F �
� �
� F A F �

� ��� �
� �
� �
� G�	��
 �

�

�
�
� � �

� F �
�
� � � �

� �
� � F �
� G �
� � � F �

� � � � F �
� �
� �
� �
� F A� G � ,

� F �� 3
���

�
� F ��
�
� F �
�

� F �� G
���

�
� F �� � ��� ��

� �
� ��	��
 �

�

�
�
� � �

� F ��
� � � �

� �
� � F �� G �

� � � F �� � � � .
If the radius 8 of the discs is large compared to the separation distance

�
, state the equations

governing the steady fluid flow in the interior of the device. Give reasons for each term that
you drop.

State the appropriate kinematic boundary conditions.

V15. A styrofoam sphere of diameter 0.5m has negligible density. It is held in sea water (� �
� � � � � �;6 � . � �!� � � � � � � 6 7 ) in the presence of gravity (� �4� � �	6 7 � ). At time 3� � the sphere
is released.

(a) What is the initial acceleration of the sphere?
(b) Assuming a drag coefficient of � � � � � � , find the terminal velocity of the sphere.
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W. WAVES

Wa1. The equations governing surface waves can be linearized if � C � � � 6 � � � � � � � � � � C � � � � �
� � � 6 �  � �

E 6 �  � � C 6
� � is (are) small.

Wa2. Waves and currents are created as winds blow over the ocean surface. Define the proper
dynamic boundary condition(s) to be applied on the water surface.

Wa3. A plane wave propagates from deep water towards the shore over mildly varying slope. At a
point P, the depth

� � K � � , period
� � � � 7 and amplitude C � � � .

(a) At P, calculate
� �

,
�
� and � � �	� 0 � � �!� � � � � ? ? � � .

(b) In deep water, calculate
�

,
�

and
�
�>6 � � .

(c) The average energy density of the wave at P is
�N = Joules/m � of

which % is due to potential energy. The power delivered (energy
flux) there (per unit width of wave front) is Watts/m. This is [larger]
[smaller] [the same] [unrelated] [can not be determined] compared to the power deliv-
ered in deep water where the amplitude is C I � � � = m.

Wa4. A wave tank 100m long, 1m wide and 4m deep has a wavemaker at one end.

(a) If the wavemaker begins to oscillate at � ��� � � I 6 7 , the disturbance will be felt at the
opposite wall after s.
(b) After steady conditions are reached, there are wave crests in the
tank at any instant.
(c) If the maximum and minimum wave heights in the tank are 20cm and 10cm respec-
tively, the reflection coefficient of the far wall is � 8 � = .

Wa5. A plane progressive wave has a free-surface elevation given by
� � 01� �>� 3 �� � � � 7 � � 0*��� �� � 3 � .

Its period
�

is . Its wavelength in the 0 and � directions are respec-
tively

�
� = ,

�
� = . The relationship between �1� � and

� in deep water is .

Wa6. A deep-water plane progressive wave of frequency � is incident onto a wall at 0��%� at an
angle of 45 � . Assuming perfect reflection from the wall, the wavelength of the wave travel-
ling on the wall is

�
� = .

Wa7. A plane progressive wave travelling from left to right in deep water has wavelength
�

and
amplitude C . (a) Qualitatively sketch the wave profile and the streamlines beneath it. Indi-
cate the relevant dimensions. If the wave hits a vertical wall and is totally reflected. (b) At
the instant when the wave elevation is maximum on the wall, qualitatively sketch the wave
profile and the streamlines beneath it. Indicate the relevant dimensions.

Wa8. A wave tank 100m long, 10m wide, and 5m deep, has a wavemaker at one end and an ab-
sorbing wall (beach) at the other end. At time 3 =0, the wavemaker begins to oscillate at a
frequency � = � rad/s creating a train of waves.

(a) The wavelength of the waves is
�

= , and
(b) the front of the wave will reach the other end at 3 = .
(c) If the average power delivered by the wavemaker is 1kW (1W = 1J/s), the amplitude
of the waves in the tank is C = .
(d) If the water depth is reduced to only 0.2m, the corresponding answers are

�
= ,

3 = , and C = .
(e) For this depth, the maximum shear stress on the bottom is � � � � � = .

Wa9. For wave propagation in a certain medium, the dispersion relationship has the form � �� � �  . The ratio of the group to phase speed in this medium is
��� 6 �  = .

Wa10. A two-dimensional ship model of length 1m is towed in a deep tank at a speed of 5m/s.

(a) The waves behind the ship have
�
 = m/s.

(b) If the wave-making resistance on the model is 104 Joules/m2, the amplitude of the
waves is C = m.
(c) As the speed of the model is decreased by a factor of 2,

�
will [increase] [decrease]

[remain the same] by a factor of .
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Wa11. When a log blocking the entire width of a towing tank is towed at a speed of 1m/s, it gen-
erates a two-dimensional wave of amplitude 0.1m behind it. The wave drag on the log is

N, and the effective power expended by the towing carriage due to wave
generation is . If the wave amplitude is doubled at twice the speed, the
effective power is changed by a factor of .

Wa12. A two-dimensional ship model is towed in a deep-water tank at a speed � . The steady
waves behind the ship have phase velocity

�
 = , group velocity

� �
= ,

and wavelength
�

= . If the waves have amplitude C , the wave resistance
of the model is given by * = .

Wa13. An observer on a fixed buoy in deep water measures a wave period of 10 seconds while a
ship moving in an opposite direction to that of wave propagation encounters a wave every
6 seconds. The wavelength of the wave is m and the speed of the ship is

m/s. If the ship turns around and follows the wave at the same speed,
an observer on the ship will measure a wave period of seconds.

Wa14. In an experiment, waves are created by heaving a buoy up and down with (sinusoidal)
frequency � and amplitude C . The relevant Froude and Reynolds numbers for gravity � ,
kinematic viscosity � , and density � for this experiment are -�A � , and
8 @ � . Depending on the physics one is interested in, the force on the
buoy can be normalized/nondimensionalized by - � = - 6 , - 6 ,
or - 6 .

Wa15. A towing tank has a partially reflecting beach at the far end. Equipped with a wave eleva-
tion ( % ) gauge, the minimum amount of data one needs in order to calculate the reflection
coefficient � 8 � are: . In terms of this data, � 8 � is given by: .

Wa16. The resonant frequency of a certain cylindrical cable in air is 1 rad/s. If the cable is neu-
trally buoyant, its resonant frequency in water should be rad/s. In deep
water, a wave which has this resonance frequency will have a wavelength of

�
= m.

Wa17. A wave tank is 100m long and 1m deep. At time 3 =0, the wavemaker begins to oscillate at
a period of

� � 10s. The wavelength of the waves is
�

= , and the front of
the wave will reach the other end at 3 = . If the wave amplitude is C =1cm,
the magnitude of the velocity on the bottom is � � = . The boundary layer
on the tank bottom is a boundary layer and has a thickness given by
2 # � @ = . The maximum shear stress on the bottom due to this boundary
layer is � � = . Assuming that the average power loss per unit area is given
by � � � � and remains constant in time, with no more power input from the wavemaker the
time it takes for the boundary layer dissipation to reduce the wave amplitude C by 50%
would be .

Waves problems continued next page
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W1. Deep water waves with an amplitude of 1 meter are observed to pass a fixed buoy at a fre-
quency of 1 wave every 5 seconds.

(a) What is their wavelength?
(b) What is the velocity of the crests?
(c) What is the amplitude of the particle velocity on the free surface?
(d) At what depth is the particle velocity reduced to 10% of its value on the surface?

W2. A plane progressive wave has a wavelength of 50m in deep water (15 � C SW) and a wave
height of 4m.

(a) What is the frequency at which wave crests pass a fixed point?
(b) What is the magnitude of the particle velocity at the surface?
(c) What is the magnitude of the particle velocity at depth of 10m below the free sur-
face?
(d) What is the magnitude of the pressure variation at a depth of 10m?
(e) What is the velocity at which the crests move?
(f) What is the average energy density?
(g) What is the rate of energy flux per meter of crest length?

W3. A wave tank 50m long, 2m wide and very deep has a wave maker at one end and a vertical
wall at the other. The tank contains fresh water at 15 � C. At time 3���� , the wave maker
begins to oscillate at one cycle per second.

15 C, Fresh Water
o

(a) What is the wave length of the generated waves?
(b) The average power delivered to the waves is 3 Joules/s. What is the amplitude of the
waves?
(c) When does the wave train reach the opposite end of the tank?
(d) If the waves are perfectly reflected, what is the magnitude of the wave force on the
far wall of the tank?

W4. A deep water wave of amplitude C and wave number
� �,� � 6 � is incident upon a stationary

long (two-dimensional) square barge of dimension � :

L

L

x

y
x = -L/2 x = L/2

A
λ = 2 /kπ

(a) Assuming C 6 � � � and
� � � � and ignoring both viscous and diffraction effects,

calculate the horizontal wave force - � on the barge using a Froude-Krylov approxima-
tion.
(b) An alternative approach is to use Morison’s equation and write:

� � ��������� #�	 ��
 � �	 �
where I �*6 I 3 is the (Eulerian) fluid acceleration at the center of the waterplane (0 �
���J� ). By comparing the resulting formulas from (a) and (b), find an expression for� � as a function of the dimensionless parameter

� � . What is the asymptotic value of
� � for

� � � � ?
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W5. It is proposed that an underwater storage tank be constructed by anchoring a long (two-
dimensional) square section of width = height = ��� � � (using � � � � � � � �;6 � . � � � � � 6 7 � ):

SWL

h = 15m

1m

1m

10m

P

(a) If the mass of the empty tank can be ignored, find the natural swaying period
� � of

the tank.
(b) As a plane progressive wave passes by, a pressure probe at

�
on the ocean floor de-

tects a dynamic pressure of
�
� � 3 � �

� � � � � � 3 where
� � �%� � � � � � 6 � � and � �%� � � I 6 7 .

Find the wavelength
�

and amplitude C of the wave.
(c) When the body is small compared to the wavelength ( � � �

), it is correct to as-
sume that the wavefield is largely unaffected by the presence of the body. Using this
assumption, calculate the horizontal force (per unit width) - on the box and the dy-
namic tension force

�
in the anchor line due to the wave motion.

(d) During this “storm,” the anchor breaks and the tank is flooded and becomes neu-
trally buoyant. How close will the tank come to (i) touching the ocean floor; and (ii) the
mean water line?
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