MIT OpenCourseWare
http://ocw.mit.edu

2.161 Signal Processing: Continuous and Discrete Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING
 2.161 Signal Processing - Continuous and Discrete

Parallel Derivations of the Z and Laplace Transforms ${ }^{1}$

The following is a summary of the derivation of the Laplace and Z transforms from the continuousand discrete-time Fourier transforms:

The Laplace Transform

(1) We begin with causal $f(t)$ and find its Fourier transform (Note that because $f(t)$ is causal, the integral has limits of 0 and ∞):

$$
F(j \Omega)=\int_{0}^{\infty} f(t) e^{-j \Omega t} d t
$$

(2) We note that for some functions $f(t)$ (for example the unit step function), the Fourier integral does not converge.
(3) We introduce a weighted function

$$
w(t)=f(t) e^{-\sigma t}
$$

and note

$$
\lim _{\sigma \rightarrow 0} w(t)=f(t)
$$

The effect of the exponential weighting by $e^{-\sigma t}$ is to allow convergence of the integral for a much broader range of functions $f(t)$.
(4) We take the Fourier transform of $w(t)$

$$
\begin{aligned}
W(j \Omega)=\tilde{F}(j \Omega \mid \sigma) & =\int_{0}^{\infty}\left(f(t) e^{-\sigma t}\right) e^{-j \Omega t} d t \\
& =\int_{0}^{\infty} f(t) e^{-(\sigma+j \Omega)} d t
\end{aligned}
$$

and define the complex variable $s=\sigma+j \Omega$ so that we can write

$$
F(s)=\tilde{F}(j \omega \mid \sigma)=\int_{0}^{\infty} f(t) e^{-s t} d t
$$

$F(s)$ is the one-sided Laplace Transform. Note that the Laplace variable $s=\sigma+j \Omega$ is expressed in Cartesian form.

The Z transform

(1) We sample $\mathrm{f}(\mathrm{t})$ at intervals ΔT to produce $f^{*}(t)$. We take its Fourier transform (and use the sifting property of $\delta(t))$ to produce

$$
F^{*}(j \Omega)=\sum_{n=0}^{\infty} f_{n} e^{-j n \Omega \Delta T}
$$

(2) We note that for some sequences f_{n} (for example the unit step sequence), the summation does not converge.
(3) We introduce a weighted sequence

$$
\left\{w_{n}\right\}=\left\{f_{n} r^{-n}\right\}
$$

and note

$$
\lim _{r \rightarrow 1}\left\{w_{n}\right\}=\left\{f_{n}\right\}
$$

The effect of the exponential weighting by r^{-n} is to allow convergence of the summation for a much broader range of sequences f_{n}.
(4) We take the Fourier transform of w_{n}

$$
\begin{aligned}
W^{*}(j \Omega)=\tilde{F}^{*}(j \Omega \mid r) & =\sum_{n=0}^{\infty}\left(f_{n} r^{-n}\right) e^{-j n \Omega \Delta T} \\
& =\sum_{n=0}^{\infty} f_{n}\left(r e^{j \Omega \Delta T}\right)^{-n}
\end{aligned}
$$

and define the complex variable $z=r e^{j \Omega \Delta T}$ so that we can write

$$
F(z)=\tilde{F}^{*}(j \Omega \mid r)=\sum_{n=0}^{\infty} f_{n} z^{-n}
$$

$F(z)$ is the one-sided Z-transform. Note that $z=$ $r e^{j \Omega \Delta T}$ is expressed in polar form.

[^0]The Laplace Transform (contd.)
(5) For a causal function $f(t)$, the region of convergence (ROC) includes the s-plane to the right of all poles of $F(j \Omega)$.

The Z transform (contd.)
(5) For a right-sided (causal) sequence $\left\{f_{n}\right\}$ the region of convergence (ROC) includes the z-plane at a radius greater than all of the poles of $F(z)$.

We note that the mapping between the s plane and the z plane is given by

$$
z=e^{s \Delta T}
$$

and that the imaginary axis $(s=j \Omega)$ in the s-plane maps to the unit circle $\left(z=e^{j \Omega \Delta T}\right)$ in the z-plane.

Furthermore we note that the mapping of the unit circle in the z-plane to the imaginary axis in the s-plane is periodic with period 2π, and that the mapping of the $j \Omega$ axis to the unit circle produces aliasing for $|\Omega|>\pi / \Delta T$.

If we define a normalized discrete-time frequency that is independent of ΔT, that is

$$
\omega=\Omega \Delta T \quad \omega \leq \pi
$$

we can make the following comparisons:

The Laplace Transform (contd.)
(6) If the ROC includes the imaginary axis, the FT of $f(t)$ is $F(j \Omega)$:

$$
F(j \Omega)=\left.F(s)\right|_{s=j \Omega}
$$

(7) The convolution theorem states
$f(t) \otimes g(t)=\int_{-\infty}^{\infty} f(\tau) g(t-\tau) d \tau \stackrel{\mathcal{L}}{\Longleftrightarrow} F(s) G(s)$
(8) For an LTI system with transfer function $H(s)$, the frequency response is

$$
\left.H(s)\right|_{s=j \Omega}=H(j \Omega)
$$

if the ROC includes the imaginary axis.

The \mathbf{Z} transform (contd.)
(6) If the ROC includes the unit circle, the DFT of $\left\{f_{n}\right\}, n=0,1, \ldots, N-1$. is $\left\{F_{m}\right\}$ where

$$
F_{m}=\left.F(z)\right|_{z=e^{j \omega_{m}}}=F\left(e^{j \omega_{m}}\right),
$$

where $\omega_{m}=2 \pi m / N$ for $m=0,1, \ldots, N-1$.
(7) The convolution theorem states

$$
\left\{f_{n}\right\} \otimes\left\{g_{n}\right\}=\sum_{m=-\infty}^{\infty} f_{m} g_{n-m} \stackrel{\mathcal{Z}}{\Longleftrightarrow} F(z) G(z)
$$

(8) For a discrete LSI system with transfer function $H(z)$, the frequency response is

$$
\left.H(z)\right|_{z=e^{j \omega}}=H\left(e^{j \omega}\right) \quad|\omega| \leq \pi
$$

if the ROC includes the unit circle.

The Laplace Transform (contd.)
(9) The transfer function

$$
H(s)=\frac{b_{m} s^{m}+b_{m-1} s^{m-1}+\ldots+b_{1} s+b_{0}}{a_{n} s^{n}+a_{n-1} s^{n-1}+\ldots+a_{1} s+a_{0}}
$$

is derived from the ordinary differential equation

$$
\begin{aligned}
& a_{n} \frac{d^{n} y}{d t^{n}}+a_{n-1} \frac{d^{n-1} y}{d t^{n-1}} \ldots+a_{1} \frac{d y}{d t}+a_{0} y \\
& \quad=b_{m} \frac{d^{m} f}{d t^{m}}+\ldots+b_{1} \frac{d f}{d t}+b_{0} f
\end{aligned}
$$

(10) Poles of $H(s)$ in the rh-plane indicate instability in the continuous-time system.
(11) The frequency response $H(j \omega)$ may be interpreted geometrically from the poles and zeros of $H(s)$ according to the following diagram:

then $H\left(j \Omega_{o}\right)=\left.H(s)\right|_{s=j \Omega_{o}}$ and

$$
\begin{aligned}
|H(j \Omega)| & =K \frac{\prod_{i=1}^{m} q_{i}}{\prod_{i=1}^{n} r_{i}} \\
\angle H(j \Omega) & =\sum_{i=1}^{n} \phi_{i}-\sum_{i=1}^{n} \theta_{i}
\end{aligned}
$$

(12) If $f(t) \stackrel{\mathcal{F}}{\Longleftrightarrow} F(s)$ then

$$
f(t-\tau) \stackrel{\mathcal{F}}{\Longleftrightarrow} e^{-s \tau} F(s)
$$

which is the delay property of the Laplace transform.

The Z transform (contd.)
(9) The transfer function
$H(z)=\frac{b_{m} z^{-m}+b_{m-1} z^{-(m-1)}+\ldots+b_{1} z^{-1}+b_{0}}{a_{n} z^{-n}+a_{n-1} z^{-(n-1)}+\ldots+a_{1} z^{-1}+a_{0}}$
is derived from the difference equation

$$
\begin{aligned}
& a_{0} y_{k}+a_{1} y_{k-1}+\ldots+a_{n-1} y_{k-(n-1)}+a_{0} y_{k-n} \\
& \quad=b_{0} f_{k}+b_{1} f_{k-1}+\ldots+b_{m} f_{k-m}
\end{aligned}
$$

(10) Poles of $H(z)$ outside the unit circle indicate instability in the discrete-time system.
(11) The frequency response $H(j \omega),(\omega=\Omega / \Delta T)$ may be interpreted geometrically from the poles and zeros of $H(z)$ according to the following diagram:

then $H\left(e^{j \omega}\right)=\left.H(z)\right|_{z=e^{j \omega}}$ and

$$
\begin{aligned}
& \left|H\left(e^{j \omega}\right)\right|=K \frac{\prod_{i=1}^{m} q_{i}}{\prod_{i=1}^{n} r_{i}} \\
& \angle H\left(e^{j \omega}\right)=\sum_{i=1}^{n} \phi_{i}-\sum_{i=1}^{n} \theta_{i}
\end{aligned}
$$

(12) If $\left\{f_{n}\right\} \stackrel{\mathcal{Z}}{\Longleftrightarrow} F(z)$ then

$$
\left\{f_{n-m}\right\} \stackrel{\mathcal{Z}}{\Longleftrightarrow} z^{-m} F(z),
$$

which is the delay (shift) property of the Z transform.

[^0]: ${ }^{1}$ D. Rowell October 22, 2008

