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Introduction 

In the frequency-sampling filters the parameters that characterize the the filter are the 
values of the desired frequency response H(ejω) at a discrete set of equally spaced sampling 
frequencies. In particular, let 

2π 
ωk = k k = 0, . . . , N  − 1 (1)

N 

as shown in Fig. 1 for the cases of N even, and N odd. Note that when N is odd there 
is no sample at the Nyquist frequency, ω = π. The frequency-sampling method guarantees 
that the resulting filter design will meet the given design specification at each of the sample 
frequencies. 
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Figure 1: Representative z-plane location of frequency samples for (a) N even, and (b) N 
odd. 

For convenience denote the complete sample set {Hk} as 

Hk = H(ejωk ) k = 1, . . . , N  − 1. 

For a filter with a real impulse response {hn} we require conjugate symmetry, that is 

¯HN−k = Hk (2) 
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and further, for a filter with a real, even impulse response we require {Hk} to be real and 
even, that is 

HN−k = Hk.	 (3) 

Within these constraints, it is sufficient to specify frequency samples for the upper half of 
the z-plane, that is for 

2π k = 0, . . . ,  N−1 N odd 
ωk = k N	 

2 (4)
N k = 0, . . . ,  

2 N even. 

and use Eqs. (2) or (3) to determine the other samples. 
If we assume that H(ejω) may be recovered from the complete sample set {Hk} by the 

cardinal sinc interpolation method, that is 

N−1 

H(ejω) =  
� 

Hk 
sin (ω − 2πk/N) 

(5)
ω − 2πk/N k=0 

then H(ejω) is completely specified by its sample set, and the impulse response, of length 
N , may be found directly from the inverse DFT, 

{hn} = IDFT {Hk} 

where 
N−11 � 

j 2πkn 
hn = Hke N n = 0, . . . , N  − 1	 (6)

N k=0 

As mentioned above, this method guarantees that the resulting FIR filter, represented by 
{hn}, will meet the specification H(ejω) =  Hk at ω = ωk = 2kπ/N . Between the given 
sampling frequencies the response H(ejω) will be described by the interpolation of Eq. (5). 

1.1 Linear-Phase Frequency-Sampling Filter 

The filter described by Eq. (6) is finite, with length N , but is non-causal. To create a 
causal filter with a linear phase characteristic we require an impulse response that is real 
and symmetric about its mid-point. This can be done by shifting the computed impulse 
response to the right by (N − 1)/2 samples to form 

H ′(z) =  z −(N−1)/2H(z) 

but this involves a non-integer shift for even N . Instead, it is more convenient to add the 
appropriate phase taper to the frequency domain samples Hk before taking the IDFT. The 
non-integer delay then poses no problems: 

•	 Apply a phase shift of
 
πk(N − 1)
 

φk = −	 (7)
N
 

to each of the samples in the upper half z-plane
 

H ′ jφk 
k = 0, . . . , (N − 1)/2 (for n odd) 

= Hkek	 k = 0, . . . , N/2 (for n even) 
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• Force the lower half plane samples to be complex conjugates using Eq. (2).
 

H ′ = H̄ ′ k = 1, . . . , (N − 1)/2 (for n odd) 
N−k k k = 1, . . . , N/2 − 1 (for n even) 

• Then the linear-phase impulse response is 

{hn} = IDFT {Hk 
′ } 

1.2 A Simple MATLAB Frequency-Sampling Filter 

The Appendix contains a MATLAB script of a tutorial frequency-sampling filter 
h = firfs(samples) 

that takes a vector samples of length N of the desired frequency response, and returns the 
linear-phase impulse response h of length 2N − 1. 

The following MATLAB commands were used to generate a filter with 22 frequency 
samples, generating a length 43 filter. 

h=firfs([1 1 1 1 0.4 0 0 0 0 0.8 2 2 2 2 0.8 0 0 0 0 0 0 0 ]); 
freqz(h,1) 

The filter has two pass-bands; a low-pass region with a gain of unity, and a band-pass region 
with a gain of two. Notice that the band-edges have been specified with transition samples, 
this is discussed further below. The above commands produced the following frequency 
response for the filter. 
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1.3 The Effect of Band-Edge Transition Samples 

One of the advantages of the frequency-sampling filter is that the band-edges may be more 
precisely specified than the window method. For example, low-pass filters might be specified 
by 

h = firfs([1 1 1 1 1 0.4 0 0 0 0 0 0]); 
with one transition value of 0.4, or 

h = firfs([1 1 1 1 0.7 0.2 0 0 0 0 0 0]); 
with a pair of transition specifications. The frequency-sampling filter characteristic will pass 
through these points, and they can have a significant effect on the stop-band characteristics 
of the filter. 

Figure 2 shows the effect of varying the value of a single transition point in a filter of 
length N = 33. The values shown are for t = 0.6, 0.4 and 0.2. There is clearly a significant 
improvement in the stop-band attenuation for for the case t = 0.4. Similarly Fig. 3 compares 
the best of these single transition values (t = 0.4) with a the response using two transition 
points (t1 = 0.59, t2 = 0.11). The filter using two transition points shows a significant 
improvement in the stop-band over the single point case, at the expense of the transition 
width. 

Rabiner et al. (1970) did an extensive linear-programming optimization study to deter
mine the optimum value of band edge transition values, and tabulated the results for even 
and odd filters of different lengths. The results show that for one transition point topt ≈ 0.4, 
and for two points topt ≈ 0.59, and 0.11. 
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Frequency f/F

N 

Figure 2: The effect of including a single transition value with value t on the stop-band 
characteristics of a low-pass (N=33) frequency sampling filter 
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Figure 3: The effect of including a two band-edge transition values t1 and t2 on the stop-band 
characteristics of a low-pass (N=33) frequency sampling filter. In this case the comparison 
is with the single value t = 0.4 frequency response. 

2	 A Recursive Realization of the Frequency-Sampling 
Filter 

We saw above that the impulse response hn is the IDFT of the phase-shifted frequency 
samples or
 

1 N−1 
j 2πn khn = 

� 
Hk
� e .N 

N k=0 

The z-transform is then 
N−1 

H(z) = 
� 

hnz−n 

n=0 

N−1 
� 

1 N−1 
j 2πn 

�
k = 

� � 
Hk
� e N z−n	 (8)

N n=0 k=0 

and reversing the summation order 

1 N−1 N−1 
j 2πk 

H(z) = 
� 

Hk
� � �

e N z−1
�n 

N k=0 n=0 

The z-transform of a finite exponential sequence xn = an for n = 0, . . . , N −1 and 0 elsewhere 
is 

1 − (az−1)N 

X(z) = 
1 − az−1 
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so that 
1 �

1 − z−N 
� N−1 Hk

�
H(z) = 

� 
(9)

N k=0 1 − (ej2πk/N )z−1 

In this form the transfer function is expressed directly in terms of the frequency samples 
instead of the impulse response. 

Equation (9) expresses the filter as a pair of cascaded filters, H(z) = H1(z)H2(z) where 

H1(z) = 
1 �

1 − z−N 
� 

(10)
N 

is a non-recursive, all-zero filter with N zeros located on the unit-circle, at zk = ej2πk/N , 
k = 0, . . . , N − 1. The difference equation for this filter is simply 

1 
xn = (fn − fn−N )

N 

The second filter is a bank of parallel first-order recursive systems 

N−1 Hk
�

H2(z) = 
� 

(11) 
k=0 1 − (ej2πk/N )z−1 

each of which has a pole pk that coincides with a zero in H1(z). The difference equation for 
each of these filters will be 

yk,n = (ej2πk/N )yk,n−1 + Hk
� xn 

which involves complex arithmetic. However if we combine two such filters corresponding 
to complex conjugate pole pairs, and recognize that H � and Hk

� are complex conjugates, N −k 

then a second-order filter with real coefficients results. 

H � H �
Hk(z) = k + N−k 

1 − (ej2πk/N )z−1 1 − (ej2π(N−k)/N )z−1 

Ak − Bkz
−1 

= (12)
1 − 2 cos(2πk/N)z−1 + z−2 

where 

Ak = Hk
� + H �

N−k 

Bk = Hk
� e−j2πk/N + H � j2πk/N 

N−ke 

and for the linear-phase filter with Hk
� = Hke

−jπk(N−1)/N 

� 
πk 

� 

Ak = Bk = (−1)k2Hk cos . (13)
N 

The difference equation for the kth second-order linear-phase filter element is therefore 

yk,n = 2 cos(2πk/N)yk,n−1 − yk,n−2 + Ak (xn − xn−1) . 
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Figure 4: Single second-order filter section in H2(z) representing complex conjugate fre
quency samples Hk

� and H �
N−k. 

The structure of a single second-order filter section is shown in Fig. 4. 
The complete filter H2(z) consists of a parallel bank of second-order blocks, supplemented 

fist-order blocks as necessary: 

(N−1)/2 � 

k=0 

Ak − Bkz
−1
 


1 − 2 cos(2πk/N)z−1 + z−2
 


H0
H2(z) = 

1 − z−1 
for N odd, (14)

+
 


or
 


(N/2)−1 

k=0 

Ak − Bkz
−1
 


1 − 2 cos(2πk/N)z−1 + z−2
 


H0 HN/2
H2(z) = for N even. (15)
+
 +
 


1 − z−1 1 + z−1 

The advantage of this structure is in the implementation of narrow band filters where many 
of the frequency samples Hk are specified as zero. Then many of the second-order blocks 
will have zero gain and need not be included in the realization, greatly reducing the compu
tational burden. 

Example: Show the frequency-sampling realization of a N = 32 linear-phase 
FIR filter with frequency samples: 

⎧
⎪ 

⎩
⎨
⎪ 

1 k = 0, 1, 2
 

0.5 k = 3
Hk = H(ej2πk/32) = 
0 k = 4, 5, . . . , 15 

single first-order block, corresponding to H0
�H2(z) will contain a
 
 ,
 and three
 


second-order blocks corresponding to H1
� . H2

� and H3
� and their complex conju

gates H31, H30, and H29.
 From Eq. (13), 

A1 = B1 = −2 cos (π/32)
 

A2 = B2 = 2 cos (π/16)
 

A3 = B3 = − cos (3π/32)
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The complete structure is shown in Fig. 5. As shown there will be a total of 6 
multiplications and 14 additions in the computation of each output value, which 
represents a considerable savings over the convolution with an impulse response 
length N = 32. 
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Figure 5: The complete N = 32 filter in the example, with three second-order blocks and 
one first-order block in H2(z). 
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Appendix: A Simple MATLAB Linear-Phase FIR Function 
% ------------------------------------------------------------------------
% 2.161 Classroom Example - firfs - A simple Frequency-Sampling Linear-Phase FIR 
% Filter based on DFT interpolation. 
% Usage : h = firfs(samples) 
% where samples - is a row vector of M equi-spaced, real values 
% of the freq. response magnitude. 
% The samples are interpreted as being equally spaced around 
% the top half of the unit circle at normalized (in terms of 
% the Nyquist frequency f_N) frequencies from 
% 0 to 2(M-1)/(2M-1) x f_N, 
% or at frequencies 2k/(2N-1)xf_N for k = 0...M-1 
% Note: Because the length is odd, the frequency response 
% is not specified at f_N. 
% h - is the output impulse response of length 2M-1 (odd). 
% 
% The filter h is real, and has linear phase, i.e. has symmetric 
% coefficients obeying h(k) = h(2M+1-k), k = 1,2,...,M+1. 
% 
% Version: 1.0 
% Author: D. Rowell 10/6/07 
% ------------------------------------------------------------------------
% 
function h = firfs(samples) 
% 
% Find the length of the input array... 
% The complete sample set on the unit circle will be of length (2N-1) 
% 
N = 2*length(samples) -1; 
H_d = zeros(1,N); 
% 
% We want a causal filter, so the resulting impulse response will be shifted 
% (N-1)/2 to the right. 
% Move the samples into the upper and lower halves of H_d and add the 
% linear phase shift term to each sample. 
% 
Phi = pi*(N-1)/N; 
H_d(1) = samples(1); 
for j = 2:N/2-1 

Phase = exp(-i*(j-1)*Phi); 
H_d(j) = samples(j)*Phase; 
H_d(N+2-j) = samples(j)*conj(Phase); 

end 
% 
% Use the inverse DFT to define the impulse response. 
% 
h = real(ifft(H_d)); 
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