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The Fast Fourier Transform 1 

Introduction: 
Although the DFT was known for many decades, its utility was severely limited because of the 
computational burden. The calculation of the DFT of an input sequence of an N length sequence 
{fn} 

N−1 

fne−j 2πmn 
Fm = 

� 
N , m = 0, . . . , N − 1 (1) 

n=0 

requires N complex multiplications to compute each on the N values, Fm, for a total of N2 multi
plications. Early digital computers had neither fixed-point nor floating-point hardware multipliers, 
and multiplication was performed by binary shift-and-add software algorithms. Multiplication was 
therefore a computationally “expensive” and time consuming operation, rendering machine com
putation of the DFT impractical for common usage. 

In 1965 Cooley and Tukey [1] of IBM labs published a ground-breaking paper that presented a 
computational algorithm for the DFT that required just a small fraction of the complex multiplica
tions in Eq. (1). The Fast Fourier Transform (FFT) has revolutionized digital signal processing by 
allowing practical fast frequency domain implementation of processing algorithms. (It is interesting 
to note in retrospect that the techniques used in the FFT can be found all the way back to Gauss, 
although the significance was not recognized until Cooley and Tukey). 

There are many variations on the FFT algorithm. This handout examines just one of them: 
the Radix-2 FFT with decimation in time, which is probably the most commonly used FFT. The 
term Radix-2 refers to the limitation that the sample length N must be an integer power of 2, 
while decimation in time means that the sequence {fn} must be re-ordered before applying the 
algorithm. 

The Radix-2 FFT with Decimation in Time: 
We start by writing the DFT of Eq. (1) as 

N−1 

fne−j 2πmn 
N−1 

N W mnFm = 
� 

= 
� 

fn , m = 0, . . . , N − 1 (2)N 
n=0 n=0 

where WN = e−j2π/N . We also note the following periodic and symmetry properties of WN 

WN
k(N−n) = WN

−kn = WN
kn (complex conjugate symmetry), • 

W kn = W k(n+N) = W n(k+N) (periodicity in n and k),• N N N 

• WN
n = −WN

n−N/2 for n ≥ N/2. 

The FFT recognizes that these properties render many of the N2 complex multiplications in Eq. 
(1) redundant. 

We start by assuming that the input sequence length N is even. We then ask whether any 
computational efficiency might be gained from splitting the calculation of {Fm} into two sub-
computations, each of length N/2, involving the even samples, {f2n}, and odd samples {f2n+1} for 
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n
a

b

 a  +  W    bN
n

n = 0 . . . N/2 − 1: 

P −1 P −1 
m(2n+1)

Fm =	 	
� 

f2nWN 
2mn + 

� 
f2n+1WN 

n=0 n=0 

P −1 

W 2mn m
P −1

2mn=	 	
� 

f2n N + WN 

� 
f2n+1WN 

n=0 n=0 

P −1 P −1 

W mn m mn= 
� 

f2n P + WN 

� 
f2n+1WP 

n=0 n=0 

= Am + WN
mBm, m = 0, . . . , N − 1. (3) 

where P = N/2, {Am} is a DFT of length N/2, based on the even sample points, and similarly 
{Bm} is a DFT of length N/2 based on the odd sample points of {fn}. We also note from the 
properties of the DFT that both {Am} and {Bm} are periodic with period N/2, that is 

Am+N/2 = Am, and Bm+N/2 = Bm 

so that 

Fm = Am + WN
mBm for m = 0 . . . (N/2 − 1), and (4) 

Fm = Am−N/2 − WN
m−N/2

Bm−N/2 for m = N/2 . . . (N − 1) (5) 

Equations (4) and (5) show that a DFT of length N may be synthesized by combining two 
shorter DFTs from an even/odd decomposition of the original data set. For example, if N = 8, F3 

and F7 are simply related: 

F3	 	 = A3 + W8
3B3 

F7	 	 = A7 + W8
7B7 = A3 − W8

3B3 

so that N/2 multiplications are required to combine the two sets. Each of the two shorter DFTs 
requires (N/2)2 complex multiplications, therfore the total required is N2/2+N/2 < N2, for N > 2, 
indicating a computational saving. 

A modified discrete form of Mason’s signal-flow graph is commonly used to display the algo
rithmic structure of Eq. (3). Figure 1 shows the signal-flow graph - consisting of a network of nodes 
connected by line segments. The algorithm works from left to right, and each right-hand node is 
assigned a value that is the weighted sum of the connected left-hand nodes, where the indicated 
weight n is the exponent of WN . If no weight is indicated, it is assumed to be unity (or equivalent 
to WN 

0 ). Thus the output of the step shown in Fig. 1 is c = a + WN
n b. 

Figure 1: Signal-flow graph notation. 

With this notation the combining of the two length N/2 DFTs is illustrated in Fig. 2 for N=8. 
Each right-hand node is one of the Fm, formed by the appropriate combination of Am and Bm as 
developed in Eqs. (3), (4) and (5). 

If N is divisible by 4, the process may be repeated, and each length N/2 DFT may be formed by 
decimating the two N/2 sequences into even and odd components, forming the length N/4 DFTs, 
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Figure 2: Signal-flow graph representation of combining two length-4 DFT sequences, derived from 
even and odd sample sets, into a length-8 sequence as defined in Eq. (3). 

and combining these back into a length N/2 DFT, as is shown for N = 8 in Fig. 3. Notice that all 
weights in the figure are expressed by convention as exponents of W8. In general, if the length of 
the data sequence is an integer power of 2, that is N = 2q for integer q, the DFT sequence {Fm}
may be formed by adding additional columns to the left and halving the length of the DFT at each 
step, until the length is two. For example if N = 256 = 28 a total of seven column operations 
would be required. 

The final step is to evaluate the N/2 length-2 DFTs. Each one may be written 

F0 = f0 + W2
0f1 = f0 + f1
 
 

F1 = f0 + W2
1f1 = f0 − f1,
 
 

which is simply the sum and difference of the two sample points. No complex multiplications are 
necessary. The 2-point DFT is shown in signal-flow graph form in Fig. 4, and is known as the FFT 
butterfly. 

The complete FFT algorithm for N = 8 is formed by adding a column of 2-point DFTs to the 
left of Fig. 3, as shown in Fig. 5. We note that if N = 2q, there will be q = log2(N) columns 
in the signal-flow graph, and after the sum and difference to form the 2-point DFTs there will 
be log2(N) − 1 column operations, each involving N/2 complex multiplications, giving a total of 
N/2 (log2(N) − 1) ≤ N2 . We will address the issue of computational savings in more detail later. 

Input Bit-Reversal: 
Notice that the algorithm of Fig. 5 requires that the input sequence {fn} be re-ordered in the 
left-hand column to accomplish the even-odd decomposition at each step. For this reason this form 
of the FFT is known as the FFT with decimation in time through input bit reversal. The term 
input bit reversal refers to a simple algorithm to determine the position k of the sample fn in the 
re-ordered sequence: 

1. Express the index n as a N -bit binary number. 

2. Reverse the order of the binary digits (bits) in the binary number. 

3. Translate the bit-reversed number back into decimal, to create the position in the sequence 
k. 
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Figure 3: Two steps to combining four length-2 DFT sequences into a length-8 sequence. 
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Figure 4: The 2-point DFT butterfly. 
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Figure 5: Complete radix-2 with decimation in time (input bit reversal) FFT algorithm for N = 8. 
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For example, the re-ordered position of f37 in a data sequence of length N = 256 = 28 is found 
from 

3710 = 001001012 
bit reversal 101001002 = 16410−→ 

so that f37 would be positioned at k = 164 in the decimated input sequence. Table 1 shows the 
complete re-ordering process for N = 8. 

Input position n: 0 1 2 3 4 5 6 7 
(000)2 (001)2 (010)2 (011)2 (100)2 (101)2 (110)2 (111)2 

Bit reversal ↓
(000)2 

↓
(100)2 

↓
(010)2 

↓
(110)2 

↓
(001)2 

↓
(101)2 

↓
(011)2 

↓
(111)2 

Modified position k: 0 4 2 6 1 5 3 7 

Table 1: Determination of input bit-reversed sequence order for N = 8. 

A sample FFT routine with input bit-reversal, written as a MATLAB script fftx(), is presented 
in the Appendix. This is not intended as a substitute for MATLAB’s built-in FFT functions, and 
is intended only as a tutorial example. 

As noted in the introduction, the algorithmic structure presented here is just one of several FFT 
structures. Some of these take the time domain data in the correct order and produce the DFT 
values in bit-reversed order. Other algorithms are based on frequency decomposition, and matrix 
factoring operations. 

The Inverse Fast Fourier Transform (IFFT): 
The inverse FFT is defined as 

1 N−1 
j 2πmn 

fn = 
� 

Fme N , n = 0, . . . , N − 1 (6)
N 

m=0 

While the IFFT can be implemented in the same manner as the FFT described above, it is possible 
to use a forward FFT routine to compute the IFFT as follows: Since the conjugate of a product is 
the product of the conjugates, if we take the complex conjugate of both sides we have 

1 N−1 

F me−j 2πmn 
f = 

� 
N .n N 

m=0 

The right-hand side is recognized as the DFT of F m and can be computed using a forward FFT, 
such as described above. The complete IDFT may therefore be computed by conjugating the 
output, that is 

1 
�

N−1 

F me−j 2πmn 

� 

fn = 
� 

N , n = 0, . . . , N − 1 (7)
N 

m=0 

The steps are: 

1. Conjugate the data set {Fm}. 
2. Compute the forward FFT. 

3. Conjugate the result and divide by N . 

A tutorial MATLAB inverse FFT routine, ifftx(), is presented in the Appendix. 
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Computational Savings of the FFT: 
As expressed above the computational requirements (in terms of complex multiplications) is MFFT = 
(N/2) log2(N) if the initial 2-point DFTs are implemented with exponentials. The number of 
complex multiplications for the direct DFT computation is MDFT = N2) We can therefore define a 
speed improvement factor MFFT/MDFT as is shown in Table 2. 

It should be realized,however, that in practice these dramatic improvements shown in Table 
2 will not be realized because of the significant improvement in arithmetic processing speeds, 
particularly with regard to multiplications. 

N MDFT MFFT MFFT/MDFT 

4 16 4 0.25 
8 64 12 0.188 

16 256 32 0.125 
32 1,024 80 0.0781 
64 4,096 192 0.0469 

128 16,384 448 0.0273 
256 65,536 1024 0.0156 
512 262,144 2,304 0.00879 

1024 1,048,576 5,120 0.00488 
2048 4,194,304 11,264 0.00268 
4096 16,777,216 24,576 0.00146 

Table 2: Computational speed improvement from the use of the FFT 
. 

Efficient Use of the FFT: 
The computational efficiency of an FFT function may be increased by several methods, depending 
on the application: 

If the algorithm is to be applied to a fixed length data set repetitively, the table of complex • 
exponentials WN

n (sines and cosines) may be pre-computed and stored. 

If it is known that {fn} is real, then {Fm} is conjugate symmetric about its mid-point, so • 
that only N/2 values have to be computed. 

It is possible to compute the FFT of a two data sequences of length N in one length N FFT• 
by creating a complex sequence {fn} with one data set in the real part and the other in the 
imaginary part. 

Let {cn} and {dn} be two real data sets of length N , and form them into a single complex 
sequence 

fn = cn + jdn 0 ≤ n ≤ N − 1. 

Then since the DFT is a linear operation Fm = Cm + jDm. The two sequences can be 
expressed in terms of fn as follows: 

cn =
1 �

fn + fn 

� 

2 

dn =
1 �

fn − f 
� 

2j n
 

and therefore
 

=
1 �

DFT {fn} + DFT 
�
f 

��
Cm 2 n 

Dm =
1 �

DFT {fn} − DFT 
�
fn 

�� 

2j 

6
 
 



but the DFT of 
�
f 

� 
= {FN−m} so that the two DFTs may be recovered from {Fm}:n 

Cm =
1 �

Fm + F N−m 

� 

2 

Dm =
1 �

Fm − F N−m 

� 

2j 

Because this method requires real data, it will not generally be applicable to computing an 
inverse FFT. 

Similarly, it is possible to compute the DFT of a length 2N data sequence by splitting into two • 
length N sequences and placing each in the real and imaginary parts of a length N complex
 
 
sequence.
 
 

Perform an even/odd decomposition into two N -point sequences:
 
 

cn = f2n even samples, 
dn = f2n+1 odd samples. 

Form the complex N -point sequence {fn} = {cn} + j {dn}, and use the method described 
above, so that 

Cm = 
2
1 �

Fm + F N−m 

� 

Dm =
1 �

Fm − F N−m 

� 
.

2j 

Finally, combine the two N -point DFTs into a single 2N -point DFT using Eqs. (3), 

Fm = Cm + W2 
k
N Dm m = 0, 1, . . . , N − 1 

Fm+N = Cm − W2 
k
N Dm m = 0, 1, . . . , N − 1 

Again, this method will generally not be applicable to inverse FFT calculations because the 
Fm are usually complex. 

MATLAB FFT Routines: 
MATLAB contains several DFT routines based on the FFT, including multidimensional FFTs. 
These routines are not restricted to radix-2 lengths (and will even handle prime lengths) by adjusting 
the internal algorithm. In particular, the following four routines are useful for one dimensional 
transforms: 

fft(x) is the discrete Fourier transform (DFT) of vector X. For matrices, the FFT operation 
is applied to each column. For N-D arrays, the FFT operation operates on the first non-
singleton dimension. 
f(x,n) is the N-point FFT, padded with zeros if x has less than N points and truncated if 
it has more. 
fft(X,[],DIM) or fft(X,N,DIM) applies the FFT operation across the dimension DIM. 

ifft(x) is the inverse discrete Fourier transform of X. ifft(X,N) is the N -point inverse transform. 
ifft(X,[],DIM) or ifft(X,N,DIM) is the inverse discrete Fourier transform of X across the 
dimension DIM. 

fftshift(X) is useful for visualizing the Fourier transform with the zero-frequency component in 
the middle of the spectrum. The routine shifts the zero-frequency component to center of 
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spectrum. For vectors, fftshift(X) swaps the left and right halves of X. For matrices, 
fftshift(X) swaps the first and third quadrants and the second and fourth quadrants. For 
N -dimensional arrays, fftshiftT(X) swaps ”half-spaces” of X along each dimension. 
fftshift(X,DIM) applies the fftshift operation along the dimension DIM. 

ifftshift(X) undoes the effects of fftshift. For vectors, ifftshift(X) swaps the left and right 
halves of X. For matrices, ifftshift(X) swaps the first and third quadrants and the second 
and fourth quadrants. For N -dimensional arrays, ifftshift(X) swaps ”half-spaces” of X 
along each dimension. 
ifftshift(X,DIM) applies the ifftshift operation along the dimension DIM. 

See MATLaB’s help and doc facilities for more information and descriptions of multidimensional 
transforms. 

References: 

[1	 ] Cooley, J. W. and J. W. Tukey, ”An Algorithm for the Machine Computation of the Complex 
Fourier Series,”Mathematics of Computation, Vol. 19, April 1965, pp. 297-301. 
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Appendix: MATLAB Demonstration FFT Functions: 

%--------------------------------------------------------------
% *** 2.161 Signal Processing - Continuous and Discrete *** 
% 
% fftx - Tutorial FFT routine to demonstrate the Radix-2 FFT with 
% decimation in time. 
% 
% Fout = fftx(f, k) 
% Arguments: 
% f - time domain data set ()real or complex 
% k - size of the data set k = log_2(N) 
% 
% Author: D. Rowell 
% Revision: 1.0 10-1-2007 
% 
%--------------------------------------------------------------
function Fout = fftx(f,ksize) 
N = 2^ksize; 
% Move the input data to the output array 
Fout=f; 
% 
% Perform the "bit-reversed" re-ordering of the input data 
% 
MR = 0; 
for M = 1:N-1 

L = N/2;
 
 
while MR + L > N-1
 
 

L = L/2;
 
 
end
 
 
MR = mod(MR,L) + L;
 
 
if MR >= M
 
 

temp = Fout(M+1); %swap the data points
 
 
Fout(M+1) = Fout(MR+1);
 
 
Fout(MR+1) = temp;
 
 

end 
end 
% 
% Now perform the column operations 
% 
L = 1; 
while L < N 

ISTEP = 2*L;
 
 
for K = 1:L
 
 

W = exp(-i*pi*(K-1)/L);
 
 
for P = K:ISTEP:N 

Q = P + L; % P & Q are the two points to be updated 
WBm = W*Fout(Q); 
Fout(Q) = Fout(P) - WBm; % Q identifies the "odd" block. 
Fout(P) = Fout(P) + WBm; % P identifies "even" block, 

end 
end 

L = ISTEP; 
end 
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%--------------------------------------------------------------
 
% *** 2.161 Signal Processing - Continuous and Discrete ***
 
%
 
% ifftx - Tutorial inverse FFT routine to demonstrate the Radix-2
 
% inverseFFT using a forward FFT routine.
 
%
 
% fout = ifftx(F, k)
 
% Arguments:
 
% F - frequency domain data set
 
% k - size of the data set k = log_2(N)
 
%
 
% Author: D. Rowell
 
% Revision: 1.0 10-1-2007
 
%
 
%--------------------------------------------------------------
 
function fout = ifftx(F,ksize)
 
N = 2^ksize;
 
%
 
% Conjugate the input data
 
fout=conj(F);
 
% Take the forward FFT, conjugate and divide by N
 
fout =demofft(fout,ksize);
 
fout=conj(fout)/N;
 

The following MATLAB commands take the FFT and then the IFFT of a 16-point data set and 
plot the results: 

% Form a 16-point data seqience
 

t =[0:.375:15*.375];
 

f = exp(-t).*sin(t);
 

% Compute the FFT and then the IFFT
 

F = fftx(f,4);
 

f1 = real(ifftx(F,4));
 

% Plot the results
 

plot(t, f, t, f1, ’o’);
 


Demonstration of 2.161 Sample FFT Functions 

−0.05 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

f(
t)

 =
 e

xp
(−

t)
si

n(
t)

 

Input data 
Output data 

0 1 2 3 4 5 6 

time (s) 

10
 




