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Convolution1 

1 Convolution 

Consider a linear continuous-time LTI system with input u(t), and response y(t), as shown in Fig. 
1. We assume that the system is initially at rest, that is all initial conditions are zero at time t = 0,  
and examine the time-domain forced response y(t) to a continuous input waveform u(t). 
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Figure 1: A linear system. 

In Fig. 2 an arbitrary continuous input function u(t) has been approximated by a staircase 
function ũT (t) ≈ u(t), consisting of a series of piecewise constant (zero order) sections each of an 
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Figure 2: Staircase approximation to a continuous input function u(t). 

arbitrary fixed duration, T , where 

ũT (t) =  u(nT ) for nT ≤ t <  (n + 1)T (1) 

for all n. It can be seen from Fig. 2 that as the interval T is reduced, the approximation becomes 
more exact, and in the limit 

u(t) = lim ũT (t). 
T →0 

The staircase approximation ũT (t) may be considered to be a sum of non-overlapping delayed pulses 
pn(t), each with duration T but with a different amplitude u(nT ): 

∞ 

D. Rowell, September 8, 2008 

� 
ũT (t) =  pn(t) (2) 

n=−∞ 

where � 
u(nT ) nT ≤ t <  (n + 1)T 

pn(t) =  (3)
0 otherwise 
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Each component pulse pn(t) may be written in terms of a delayed unit pulse δT (t), of width T and 
amplitude 1/T that is: 

pn(t) =  u(nT )δT (t − nT )T (4) 

so that Eq. (2) may be written: 

∞ 

ũT (t) =  u(nT )δT (t − nT )T.  (5) 
n=−∞ 

We now assume that the system response to an input δT (t) is a known function, and is designated 
hT (t) as shown in Fig. 3. Then if the system is linear and time-invariant, the response to a delayed 
unit pulse, occurring at time nT is simply a delayed version of the pulse response: 

yn(t) =  hT (t − nT ) (6) 
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Figure 3: System response to a unit pulse of duration T . 

The principle of superposition allows the total system response to ũT (t) to be written as the 
sum of the responses to all of the component weighted pulses in Eq. (5): 

∞ 

ỹT (t) =  u(nT )hT (t − nT )T (7) 
n=−∞ 

as shown in Fig. 4. 
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Figure 4: System response to individual pulses in the staircase approximation to u(t). 

For causal systems the pulse response hT (t) is zero for time t <  0, and future components of the 
input do not contribute to the sum, so that the upper limit of the summation may be rewritten: 

N 

ỹT (t) =  u(nT )hT (t − nT )T for NT  ≤ t <  (N + 1)T.  (8) 
n=−∞ 
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Equation (8) expresses the system response to the staircase approximation of the input in terms 
of the system pulse response hT (t). If we now let the pulse width T become very small, and write 
nT = τ , T = dτ , and note that limT 0 δT (t) = δ(t), the summation becomes an integral:→ 

N 

T 0→ 
n=−∞ 

t 

y(t) = lim
 
 u(nT )hT (t − nT )T (9) 

u(τ )h(t − τ )dτ (10)
=
 

−∞ 

where h(t) is defined to be the system impulse response, 

h(t) = lim hT (t). (11)
T 0→ 

Equation (10) is an important integral in the study of linear systems and is known as the convolution 
or superposition integral. It states that the system is entirely characterized by its response to an 
impulse function δ(t), in the sense that the forced response to any arbitrary input u(t) may be 
computed from knowledge of the impulse response alone. The convolution operation is often written 
using the symbol ⊗: � t 

y(t) = u(t) ⊗ h(t) = u(τ)h(t − τ)dτ. (12) 
−∞ 

Equation (12) is in the form of a linear operator, in that it transforms, or maps, an input function 
to an output function through a linear operation. 

The form of the integral in Eq. (10) is difficult to interpret because it contains the term h(t−τ) in 
which the variable of integration has been negated. The steps implicitly involved in computing the 
convolution integral may be demonstrated graphically as in Fig. 5, in which the impulse response 
h(τ) is reflected about the origin to create h(−τ), and then shifted to the right by t to form 
h(t − τ). The product u(t)h(t − τ ) is then evaluated and integrated to find the response. This 
graphical representation is useful for defining the limits necessary in the integration. For example, 
since for a physical system the impulse response h(t) is zero for all t < 0, the reflected and shifted 
impulse response h(t − τ) will be zero for all time τ > t. The upper limit in the integral is then 
at most t. If in addition the input u(t) is time limited, that is u(t) ≡ 0 for t < t1 and t > t2, the 
limits are:
 

yf (t) = 

⎧
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

� t 
u(τ )h(t − τ )dτ for t < t2 

t1 (13)
� t2 

u(τ)h(t − τ)dτ for t ≥ t2 
t1 

Example 

A simple RC first-order filter, shown in Fig. 6, is subjected to a very short unit impulsive 
voltage of duration ΔT = 0.001 seconds and magnitude 10 volts, and is observed to 
respond with a output vo(t) = 0.03e−3t . Find the response of the filter to a ramp in 
applied voltage V (t) = t for t > 0. 

Solution: The product of the impulsive force and its duration V ΔT = 0.01, and 
because of its brief duration, the pulse may be considered to be an impulse of strength 
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Figure 5: Graphical demonstration of the convolution integral.
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Figure 6: An RC filter and its impulse response. 

0.01. The measured response vo(t) may then be taken as a scaled system impulse 
response 0.01h(t), and we assume that 

h(t) = 3e−3t . (14) 

The response to a ramp in input force, F (t) = t for t > 0, may be found by direct 
substitution into the convolution integral using the assumed impulse response: 

� t 
vo(t) = τ3e−3(t−τ)dτ (15) 

0 

= 3e−3t 
� t 

τe3τ dτ (16) 
0 

where the limits have been chosen because the system is causal, and the input is iden
tically zero for all t < 0. Integration by parts gives the solution 

1 1 
v(t) = t − + e−3t . (17)

3 3 

2 Properties 

2.1 Linearity 

Convolution is a linear operation and is commutative, associative and distributive, that is 

u(t) ⊗ h(t) = h(t) ⊗ u(t) (commutative) 
u(t) ⊗ [h1(t) ⊗ h2(t)] = [u(t) ⊗ h1(t)] ⊗ h2(t) (associative) (18) 
u(t) ⊗ [h1(t) + h2(t)] = [u(t) ⊗ h1(t)] + [u(t) ⊗ h2(t)] (distributive). 

The associative property may be interpreted as an expression for the response on two systems 
in cascade or series, and indicates that the impulse response of two systems is h1(t) ⊗ h2(t), as 
shown in Fig. 7. Similarly the distributive property may be interpreted as the impulse response of 
two systems connected in parallel, and that the equivalent impulse response is h1(t) + h2(t). The 
convolution operation is also associative with respect to scalar multiplication 

a(h(t) ⊗ u(t)) = (ah (t)) ⊗ u(t) = h(t) ⊗ (au (t)) . (19) 

, 
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Figure 7: Impulse response of series and parallel connected systems. 

2.2 Differentiation 

d df dg
(f(t) ⊗ g(t)) = 

dt 
⊗ g(t) = f(t) ⊗ (20)

dt dt 

2.3 Fourier Transform Relationships 

Let y(t) = f(t) ⊗ g(t), then the Fourier transform Y (jΩ) = F {y(t)} is 

Y (jΩ) = 
� ∞ �� ∞ 

f(τ)g(t − τ)dτ

� 

e−jΩtdt 
−∞ −∞� ∞ � ∞

= f(τ)e−jΩτ dτ. g(ν)e−jΩν dν 
−∞ −∞ 

= F (jΩ)G(jΩ), (21) 

which states that the Fourier transform of a convolution is the product of the component Fourier 
transforms. 

Similarly2 

1 F−1 {F (jΩ) ⊗ G(jΩ)} = (f(t)g(t)) . (22)
2π 

leading to the duality property that a convolution operation in the time domain is equivalent to a 
multiplicative operation in the frequency domain, and vice-versa. 

The appearance of the factor 1/2π depends on the definition of the Fourier transform. We assume here that 
1 jΩtF (jΩ) = 

� ∞ 
f(t)e−jΩtdt and f(t) = 

� ∞ 
F (jΩ)e dt. −∞ 2π −∞ 

6
 


2 




