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Reading: 

Proakis and Manolakis: Secs. 12,1 – 12.2 • 

•	 Oppenheim, Schafer, and Buck:


Stearns and Hush: Ch. 13
• 

1	 The Correlation Functions (continued) 

In Lecture 21 we introduced the auto-correlation and cross-correlation functions as measures 
of self- and cross-similarity as a function of delay τ . We continue the discussion here. 

1.1 The Autocorrelation Function 

There are three basic definitions 

(a) For an infinite duration waveform: 

� T/21 
φff (τ) = lim f(t)f(t + τ) dt 

T →∞ T −T/2 

which may be considered as a “power” based definition. 

(b) For an finite duration waveform:	 If the waveform exists only in the interval t1 ≤
t ≤ t2 

t2 

ρff (τ ) = f(t)f(t + τ ) dt 
t1 

which may be considered as a “energy” based definition. 

(c) For a periodic waveform: If f(t) is periodic with period T 

t0+T1 
�

φff (τ) = f(t)f(t + τ) dt 
T	 t0 

for an arbitrary t0, which again may be considered as a “power” based definition. 
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Example 1 

Find the autocorrelation function of the square pulse of amplitude a and duration 
T as shown below. 

f ( t )

t
T0

a

The wave form has a finite duration, and the autocorrelation function is 

� T 

ρff (τ) = f(t)f(t + τ) dt 
0 

The autocorrelation function is developed graphically below 

� T −τ 

ρff (τ ) = a 2 dt 
0 

= a τ )2(T − | | − T ≤ τ ≤ T 

= 0 otherwise. 
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Example 2 

Find the autocorrelation function of the sinusoid f(t) = sin(Ωt + φ). 

Since f(t) is periodic, the autocorrelation function is defined by the average over 
one period 

t0+T1 
�

φff (τ) = f(t)f(t + τ) dt. 
T t0 

and with t0 = 0 
� 2π/ΩΩ 

φff (τ) = 
2π 0 

sin(Ωt + φ) sin(Ω(t + τ) + φ) dt 

1 
= cos(Ωt)

2 

and we see that φff (τ) is periodic with period 2π/Ω and is independent of the 
phase φ. 

1.1.1 Properties of the Auto-correlation Function 

(1)	 The autocorrelation functions φff (τ) and ρff (τ) are even functions, that is 

φff (−τ) = φff (τ), and ρff (−τ ) = ρff (τ). 

(2) A maximum value of ρff (τ) (or φff (τ ) occurs at delay τ = 0, 

|ρff (τ)| ≤ ρff (0), and |φff (τ)| ≤ φff (0) 

and we note that � ∞
ρff (0) = f 2(d) dt 

−∞ 

is the “energy” of the waveform. Similarly


1 
� ∞


φff (0) = lim f 2(t) dt

T →∞ T −∞


is the mean “power” of f(t).


(3) ρff (τ) contains no phase information, and is independent of the time origin. 

(4) If f(t) is periodic with period T , φff (τ) is also periodic with period T . 

(5) If (1) f(t) has zero mean (µ = 0), and (2) f(t) is non-periodic, 

lim ρff (τ) = 0. 
τ →∞ 
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1.1.2 The Fourier Transform of the Auto-Correlation Function


Consider the transient case 

Rf f (j Ω) = 
� ∞ 

ρf f (τ ) e−j Ωτ dτ 

= 

−∞� ∞ �� ∞ 

f(t)f(t + τ) dt 

� 

e−j Ωτ dτ 

= 

−∞ −∞� ∞ 

f(t) ej Ωt dt. 
� ∞ 

f(ν) e−j Ων dν 

= 
−∞ 

F (−j Ω)F (j Ω) 
−∞ 

= |F (j Ω)| 2 

or


ρff (τ) 
F 

Rff (j Ω) = F (j Ω) 2 ←→ | | 
where Rff (Ω) is known as the energy density spectrum of the transient waveform f(t). 
Similarly, the Fourier transform of the power-based autocorrelation function, φff (τ) 

� ∞
Φf f (j Ω) = F {φf f (τ)} = φff (τ) e−j Ωτ dτ 

= 
� ∞ 

� 

lim 
1 

−∞� T /2 

f(t)f(t + τ) dt 

� 

e−j Ωτ dτ 
−∞ T →∞ T −T /2 

is known as the power density spectrum of an infinite duration waveform.


From the properties of the Fourier transform, because the auto-correlation function 
is a real, even function of τ , the energy/power density spectrum is a real, even 
function of Ω, and contains no phase information. 

1.1.3 Parseval’s Theorem 

From the inverse Fourier transform � ∞ 1 
� ∞

ρff (0) = f 2(t) dt = Rff (j Ω) dΩ 
2π∞ −∞ 

or 
1

� ∞ � ∞ 
2f 2(t) dt =

2π 
|F (j Ω)| dΩ, 

∞ −∞ 

which equates the total waveform energy in the time and frequency domains, and which is 
known as Parseval’s theorem. Similarly, for infinite duration waveforms 

� T/2 1 
� ∞

lim f 2(t) dt = Φ(j Ω) dΩ 
−T/2T →∞ 2π −∞ 

equates the signal power in the two domains. 
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1.1.4	 Note on the relative “widths” of the Autocorrelation and Power/Energy 
Spectra 

As in the case of Fourier analysis of waveforms, there is a general reciprocal relationship 
between the width of a signals spectrum and the width of its autocorrelation function. 

• A narrow autocorrelation function generally implies a “broad” spectrum 

• and a “broad” autocorrelation function generally implies a narrow-band waveform. 

In the limit, if φff (τ) = δ(τ), then Φff (j Ω) = 1, and the spectrum is defined to be “white”. 

1.2 The Cross-correlation Function 

The cross-correlation function is a measure of self-similarity between two waveforms f(t) 
and g(t). As in the case of the auto-correlation functions we need two definitions: 

� T/21 
φfg(τ) = lim f(t)g(t + τ) dτ 

T →∞ T −T/2 

in the case of infinite duration waveforms, and 
� ∞

ρfg(τ ) = f(t)g(t + τ) dτ 
−∞ 

for finite duration waveforms. 
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Example 3 

Find the cross-correlation function between the following two functions 
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In this case g(t) is a delayed version of f(t). The cross-correlation is 

r   ( t )

t
T   -  T0

a

f g

2

2 1

where the peak occurs at τ = T2 − T1 (the delay between the two signals). 

1.2.1 Properties of the Cross-Correlation Function 

(1) φfg(τ) = φgf (−τ ), and the cross-correlation function is not necessarily an even function. 

(2) If φfg(τ) = 0 for all τ , then f(t) and g(t) are said to be uncorrelated. 

(3)	 If g(t) = af(t − T ), where a is a constant, that is g(t) is a scaled and delayed version of 
f(t), then φff (τ) will have its maximum value at τ = T . 

Cross-correlation is often used in optimal estimation of delay, such as in echolocation (radar, 
sonar), and in GPS receivers. 
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Example 4 

In an echolocation system, a transmitted waveform s(t) is reflected off an object 
at a distance R and is received a time T = 2R/c sec. later. The received signal 
r(t) = αs(t−T )+n(t) is attenuated by a factor α and is contaminated by additive 
noise n(t). 

� ∞
φsr(τ) = s(t)r(t + τ) dt 

�∞∞ 

= s(t)(n(t + τ) + αs(t − T + τ)) dt 
∞ 

= φsn(τ) + αφss(τ − T ) 

and if the transmitted waveform s(t) and the noise n(t) are uncorrelated, that is 
φsn(τ ) ≡ 0, then 

φsr(τ) = αφss(τ − T ) 

that is, a scaled and shifted version of the auto-correlation function of the trans
mitted waveform – which will have its peak value at τ = T , which may be used 
to form an estimator of the range R. 

1.2.2 The Cross-Power/Energy Spectrum 

We define the cross-power/energy density spectra as the Fourier transforms of the cross-
correlation functions: � ∞

Rfg(j Ω) = ρfg(τ) e−j Ωτ dτ 
−∞� ∞

Φfg(j Ω) = φfg(τ) e−j Ωτ dτ. 
−∞ 

Then � ∞
Rfg(j Ω) = ρfg(τ) e−j Ωτ dτ 

−∞� ∞ � ∞ 

= f(t)g(t + τ) e−j Ωτ dt dτ 
−∞ −∞� ∞ � ∞ 

= f(t) ej Ωt dt g(ν) e−j Ων dν 
−∞ −∞ 
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Rfg(j Ω) = F (−j Ω)G(j Ω) 

Note that although Rff (j Ω) is real and even (because ρff (τ) is real and even, this is 
not the case with the cross-power/energy spectra, Φfg(j Ω) and Rfg(j Ω), and they are 
in general complex. 

2	 Linear System Input/Output Relationships with Random In
puts: 

Consider a linear system H(j Ω) with a random input f(t). The output will also be random 

Then 

Y (j Ω) = F (j Ω)H(j Ω), 

Y (j Ω)Y (−j Ω) = F (j Ω)H(j Ω)F (−j Ω)H(−j Ω) 

or 
2Φyy(j Ω) = Φff (j Ω) H(j Ω) .| | 

Also 
F (−j Ω)Y (j Ω) = F (−j Ω)F (j Ω)H(j Ω), 

or 
Φfy(j Ω) = Φff (j Ω)H(j Ω). 

Taking the inverse Fourier transforms 

φyy(τ ) = φff (τ) ⊗F−1 
�|H(j Ω)| 2� 

φfy(τ ) = φff (τ) ⊗ h(τ ). 

3	 Discrete-Time Correlation 

Define the correlation functions in terms of summations, for example for an infinite length 
sequence 

φfg(n) = E {fmgm+n} 
N

= lim 
1 � 

fmgm+n, 
N →∞ 2N + 1 

m=−N 

and for a finite length sequence 

N


ρfg(n) = 
� 

fmgm+n.

m=−N
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The following properties are analogous to the properties of the continuous correlation func
tions: 

(1) The auto-correlation functions φ(ff(n) and ρff (n) are real, even functions. 

(2) The cross-correlation functions are not necessarily even functions, and 

φfg(n) = φgf (−n) 

(2) φff (n) has its maximum value at n = 0, 

|φff (n)| ≤ φff (0) for all n. 

(3) If {fk} has no periodic component 

lim φff (n) = µf 
2 . 

n→∞ 

(4)	 φff (0) is the average power in an infinite sequence, and ρff (n) is the total energy in a 
finite sequence. 

The discrete power/energy spectra are defined through the z-transform 

∞
Φff (z) = Z {φff (n)} = 

� 
φff (n)z−n 

n=−∞ 

and 

φff (n) = Z−1 {Φff (z)}
1 

� 
= Φff (z)z n−1dz 

2πj � π/T T 
= Φff ( ej ΩT ) ej nΩT dΩ. 

2π −π/T 

Note on the MATLAB function xcorr(): In MATLAB the function call phi = 
xcorr(f,g) computes the cross-correlation function, but reverses the definition of 
the subscript order from that presented here, that is it computes 

N N

φfg(n) = 
1 � 

fn+mgm =
1 � 

fngn−m
M	 M −N	 −N 

where M is a normalization constant specified by an optional argument. Care must 
therefore be taken in interpreting results computed through xcorr(). 
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3.1 Summary of z-Domain Correlation Relationships 

(The following table is based on Table 13.2 from Stearns and Hush) 

Property Formula

∞

Power spectrum of {fn} Φff (z) = 
� 

φff (n)z−n 

n=∞−∞ 

Cross-power Spectrum Φfg(z) = 
� 

φfg(n)z−n = Φgf (z
−1) 

n=

1
−∞�

Autocorrelation φff (n) = Φff (z)z n−1dz 
2πj 
1 

�
Cross-correlation φfg(n) = Φfg(z)z n−1dz 

1 
Waveform power E 

�
f 2

� 
=

2

φ

π

ff 

j 

(0) = 
� 

Φfg(z)z−1dzn 2πj 
Linear system properties Y (z) = H(z)F (z) 

Φyy(z) = H(z)H(z−1)Φff (z) 
Φfy(z) = H(z)Φff (z) 

22–10



