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Fall Term 2008 

Lecture 181 

Reading: 

• Proakis and Manolakis: 7.3.1, 7.3.2, 10.3 

• Oppenheim, Schafer, and Buck: 8.7.3, 7.1 

FFT Convolution for FIR Filters 

The response of an FIR filter with impulse response {hk} to an input {fk} is given by the 
linear convolution ∞ 

yn = fkhn−k. 
k=−∞ 

The length of the convolution of two finite sequences of lengths P and Q is N = P + Q − 1. 
The following figure shows a sequence {fn} of length P = 6, and a sequence {hn} of length 
Q = 4 reversed and shifted so as to compute the extremes of the convolved sequence y0 and 
y8. 
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The convolution property of the DFT suggests that the FFT might be used to convolve two 
equal length sequences 

yn = IDFT {DFT {fn} .DFT {hn}} . 
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However, DFT convolution is a circular convolution, involving periodic extensions of the two 
sequences. The following figure shows the circular convolution of length 6, on two sequences 
{fn} of length P = 6 and {hn} of length Q = 4. The periodic extensions cause overlap in 
the first Q − 1 samples, generating “wrap-around” errors in the DFT convolution. 
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DFT convolution of two sequences of length P and Q (P ≥ Q) in DFTs of length P 
1. Produces an output sequence of length P , whereas linear convolution produces 

an output sequence of length P + Q − 1. 

2. Introduces wrap-around error in the first Q−1 samples of the output sequence. 

The solution is to zero-pad both input sequences to a length N ≥ P +Q−1 
and then to use DFT convolution with the length N sequences. 

For example, if {fn} is of length P = 237, and {hn} is of length Q = 125, for error-free 
convolution we must perform the DFTs in length N ≥ 237 + 125 − 1 = 461. If the available 
FFT routine is radix-2, we should choose N=512. 

The use of the FFT for Filtering Long Data Sequences: The DFT convolution 
method provides an attractive alternative to direct convolution when the length of the data 
record is very large. The general method is to break the data into manageable sections, then 
use the FFT to to perform the convolution and then recombine the output sections. Care 
must be taken, however, to avoid wrap-around errors. There are two basic methods used for 
convolving long data records. Let the impulse response {hn} have length Q. 

Overlap-Save Method: (Also known as the overlap-discard, or  select-savings method.) 
In this method the data is divided into blocks of length P samples, but with successive 
blocks overlapping by Q − 1. The DFT convolution is done on each block with length 
P , and wrap-around errors are allowed to contaminate the first Q − 1 samples of the 
output. These initial samples are then discarded, and only the error-free P − (Q − 1) 
samples are saved in the output record. 
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With the overlap of the data blocks, in the mth block the samples are 

fm(n) =  f(n + m(P − (Q − 1))), n = 0, . . . , P  − 1, 

and after DFT convolution in length P , giving ymP (n), the output is taken as 

ymP (n + (Q − 1)), n  = 0, . . . , P  − (Q − 1) 
ym(n) =  

0, otherwise. 

and the output is formed by concatenating all such records: 

∞ 

y(n) =  ym(n − m(P − Q + 1)). 
m=0 
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Overlap-Add Method: In this method the data is divided into blocks of length P , but 
the DFT convolution is done in zero-padded blocks of length N = P + Q − 1 so that 
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wrap-around errors do not occur. In this case the output is identical to the linear 
convolution of the two blocks, with an initial rise of length Q − 1 samples, and a 
trailing section also of length Q − 1 samples. It is easy to show that if the trailing 
section of the mth output block is overlapped with the initial section of the (m + 1)th 
block, the samples add together to generate the correct output values. 
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MATLAB’s fftfilt() function performs DFT convolution using the overlap-add method. 

The Design of IIR Filters 

An IIR filter is characterized by a recursive difference equation 

N M 

yn = akyn−k + bkfn−k 

k=1 k=0 

and a rational transfer function of the form 

b0z0 + b1z
−1 + . . . + bM z

−M 

H(z) =  
z0 + a1z−1 + . . . + aN z−N 

IIR filters have the advantage that they can give a better cut-off characteristic than a FIR 
filter of the same order, but have the disadvantage that the phase response cannot be well 
controlled. 
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The most common design procedure for digital IIR filters is to design a continuous filter in 
the s-plane, and then to transform that filter to the z-plane. Because the mapping between 
the continuous and discrete domains cannot be done exactly, the various design methods are 
at best approximations. 

2.1 Design By Approximation of Derivatives: 

Perhaps the simplest method for low-order systems is to use backward-difference approxi
mation to continuous domain derivatives. 

Example 1 

Suppose we wish to make a discrete-time filter based on a prototype first-order 
high-pass filter 

s 
Hp(s) =  . 

s + a 
The differential equation describing this filter is 

dy df 
+ ay = 

dt dt 

The backward-difference approximation to a derivative based on samples taken 
at intervals T apart is 

dx xn − xn−1≈ 
dt T 

and substitution into the differential equation gives 

yn − yn−1 fn − fn−1 
+ ayn = 

T T 
or 

1 1 
yn = yn−1 + (fn − fn−1)

1 +  aT 1 +  aT 
The transfer function is 

1 − z−1 z − 1 
H(z) =  = 

(1 + aT )1 + z−1 (1 + aT )z + 1  

This example indicates that the method uses the transformation 

1 − z−1 

s → 
T 

in Hp(s). For higher order terms 

1 − z−1 n 
n s → . 

T 
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Example 2 

Convert the continuous low-pass Butterworth filter with Ωc = 1 rad/s to a digital 
filter with a sampling time T = 0.5 s. The transfer function is 

1 
Hp(s) =  √ . 

s2 + 2s + 1  

The discrete-time transfer function is 

1

H(z) =  � −1 �2 √ � −1 �


1−z 1−z+ 2 + 1
T T 

T 2 

= √ √ 
(1 + 2T + T 2) − (2 + 2T )z−1 + z−2 

and with T = 0.5 s,  

0.25 
H(z) =  

1.9571 − 2.7071z−1 + z−2 

The frequency response of this filter is plotted in Example 4. 

In general, the backward-difference does not lead to satisfactory digital filters that mimic 
the prototype filter characteristics. (See Proakis and Manolakis, Sec. 10.3.1). 

2.2 Design by Impulse-Invariance: 

In the impulse-invariant design method the impulse response {hn} of the digital filter is 
taken to be proportional to the samples of the impulse response hp(t) of the continuous filter 
Hp(s) with a sampling interval of T seconds. The most common form is 

hn = Thp(nT ). 
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Then
 
(nT )} = T ZTH(z) = T Z {hp 

�L−1 {Hp(s)}
� 

since hp(t) = L−1 {Hp(s)}, and where ZT {} indicates the z-transform of a continuous func
tion with sampling interval T . 

Example 3 

Find the impulse-invariant IIR filter from the prototype continuous filter 

a 
Hp(s) = . 

s + a 

Solution: Using Laplace transform tables 

hp(t) = L−1 

� 
a 

� 

= a e−at . 
s + a 

and from z-transform tables 
a�

a e−at
� 

= .ZT 
1 − e−aT z−1 

The IIR filter is �
a e−at

� 
= 

aT 
H(z) = T ZT 

1 − e−aT z−1 

and the difference equation is 

yn = e−aT yn−1 + aTfn 

For the digital filter 
∞ 

H( ej ΩT ) = H(z)| j ΩT = 
� 

hk e
−j kΩT 

z=e 
k=0 

and the DTFT of the samples of the continuous prototype’s impulse response is
 

∞ 
1 

∞ � � 
2πk 

��
DTFT {hp(nT )} = 

� 
hp(kT ) e−j kΩT = 

� 
Hp j .Ω −

T T 
k=0
 k=−∞


Then if hn = Thp(nT ), 

∞ � � 
2πk 

��
H( ej ΩT ) = 

� 
Hp j Ω − . 

T 
k=−∞ 

The discrete-time frequency response is therefore a superposition of shifted replicas of the 
frequency response of the prototype. As a result, aliasing will be present in H( ej ω) if the 
prototype’s frequency response |Hp(j Ω)| = 0 for� |Ω| ≥ π/T . 
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For this reason the impulse-invariance method is not suitable for the design of high-pass or 
band-stop filters, which by definition require a prototype Hp(s) with a non-zero frequency 
response at Ω = π/T. 

Example 4 

Design an impulse-invariant filter based on the second-order low-pass Butter-
worth prototype used in Example 2, with T = 0.5 s. 

1 
Hp(s) = 

s2 + 
√

2s + 1 

Solution: From z-transform tables 
� � 

β 
�� 

e−aT sin(βT )z ZT L−1 

(s + a)2 + β2 
= 

z2 + 2z e−aT cos(βT )z + e−2aT 

and Hp(s) may be written in this form 

1 
Hp(s) = 

(s + 1/
√

2)2 + (1/
√

2)2 

so that a = 1/
√

2, and β = 1/
√

2. Substituting these values, 

0.1719z−1 

H(z) = T ZT 

�L−1 {Hp(s)}
� 

=
1 − 1.3175z−1 + 0.4935z−2 

The frequency response of the impulse-invariant, and backward-difference (from 
Example 2) filters are compared with the prototype below: 

18–8
 



0 1 2 3 4 5 60

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

F r e q u e n c y  ( r a d / s )

Fre
qu

en
cy
 re

sp
on

se
 m

ag
nit

ud
e

x       -  P r o t o t y p e  B u t t e r w o r t h  F i l t e r

I m p u l s e - i n v a r i a n t  ( T  =  0 . 5 )
B a c k w a r d  d i f f e r e n c e  ( T  =  0 . 5 )

The MATLAB function 
[bz, az] = impinvar(bs, as, Fs) 

will compute the numerator az, and denominator bz coefficients for an impulse-invariant 
filter from the continuous prototype coefficients bs and as, with a sampling frequency Fs. 

The filter in Example 4 can be designed in a single line:
 
[bz, az] = impinvar(1, [1 sqrt(2) 1], 2).
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