
MIT OpenCourseWare
http://ocw.mit.edu

2.161 Signal Processing: Continuous and Discrete
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

�

�

	
 �

�

�

� �

	
 �
�

� 	
 � 	 � �

�

1

Massachusetts Institute of Technology

Department of Mechanical Engineering

2.161 Signal Processing - Continuous and Discrete
Fall Term 2008

Lecture 181

Reading:

• Proakis and Manolakis: 7.3.1, 7.3.2, 10.3

• Oppenheim, Schafer, and Buck: 8.7.3, 7.1

FFT Convolution for FIR Filters

The response of an FIR filter with impulse response {hk} to an input {fk} is given by the
linear convolution ∞

yn = fkhn−k.
k=−∞

The length of the convolution of two finite sequences of lengths P and Q is N = P + Q − 1.
The following figure shows a sequence {fn} of length P = 6, and a sequence {hn} of length
Q = 4 reversed and shifted so as to compute the extremes of the convolved sequence y0 and
y8.

� � � � �

	 � � � � � 	
 �
�

� � � � �

� � � � �

The convolution property of the DFT suggests that the FFT might be used to convolve two
equal length sequences

yn = IDFT {DFT {fn} .DFT {hn}} .

1copyright ©c D.Rowell 2008

18–1

However, DFT convolution is a circular convolution, involving periodic extensions of the two
sequences. The following figure shows the circular convolution of length 6, on two sequences
{fn} of length P = 6 and {hn} of length Q = 4. The periodic extensions cause overlap in
the first Q − 1 samples, generating “wrap-around” errors in the DFT convolution.

� � � � �

� � � � �

�

	
 �

� �

�

� �

� 	
 �	 � � � �

� � � � � � � 	 �
 	 � � 	 � � � � � � �

DFT convolution of two sequences of length P and Q (P ≥ Q) in DFTs of length P
1. Produces an output sequence of length P , whereas linear convolution produces

an output sequence of length P + Q − 1.

2. Introduces wrap-around error in the first Q−1 samples of the output sequence.

The solution is to zero-pad both input sequences to a length N ≥ P +Q−1
and then to use DFT convolution with the length N sequences.

For example, if {fn} is of length P = 237, and {hn} is of length Q = 125, for error-free
convolution we must perform the DFTs in length N ≥ 237 + 125 − 1 = 461. If the available
FFT routine is radix-2, we should choose N=512.

The use of the FFT for Filtering Long Data Sequences: The DFT convolution
method provides an attractive alternative to direct convolution when the length of the data
record is very large. The general method is to break the data into manageable sections, then
use the FFT to to perform the convolution and then recombine the output sections. Care
must be taken, however, to avoid wrap-around errors. There are two basic methods used for
convolving long data records. Let the impulse response {hn} have length Q.

Overlap-Save Method: (Also known as the overlap-discard, or select-savings method.)
In this method the data is divided into blocks of length P samples, but with successive
blocks overlapping by Q − 1. The DFT convolution is done on each block with length
P , and wrap-around errors are allowed to contaminate the first Q − 1 samples of the
output. These initial samples are then discarded, and only the error-free P − (Q − 1)
samples are saved in the output record.

18–2

�

�

	

With the overlap of the data blocks, in the mth block the samples are

fm(n) = f(n + m(P − (Q − 1))), n = 0, . . . , P − 1,

and after DFT convolution in length P , giving ymP (n), the output is taken as

ymP (n + (Q − 1)), n = 0, . . . , P − (Q − 1)
ym(n) =

0, otherwise.

and the output is formed by concatenating all such records:

∞

y(n) = ym(n − m(P − Q + 1)).
m=0

�
�

�

� 	

� 	 	 	 	 � 	 �� �

	

� � 	 �

� � 	 �

�

	
� �

� 	 	
� �

� 	 	
� �

� � � � � � � � � � � 	 � � � � � 	 � � � � � � � �

� 	 	 	 	 � 	 �� �

� 	 	 	 	 � 	 �� �

� � � � � � � 	 � � � � � � 	 � � � � � � � 	 � � 	 � � � � 	 � � � � � �

� � � � � � � 	 � � � � � � 	 � � � � � � � 	 � � 	 � � � � 	 � � � � � �

� � � � � � � 	 � � � � � � 	 � � � � � � � 	 � � 	 � � � � 	 � � � � � �

Overlap-Add Method: In this method the data is divided into blocks of length P , but
the DFT convolution is done in zero-padded blocks of length N = P + Q − 1 so that

18–3

	

� �

2

wrap-around errors do not occur. In this case the output is identical to the linear
convolution of the two blocks, with an initial rise of length Q − 1 samples, and a
trailing section also of length Q − 1 samples. It is easy to show that if the trailing
section of the mth output block is overlapped with the initial section of the (m + 1)th
block, the samples add together to generate the correct output values.

� � �

	

	

� � 	 �

� � 	 �

�

� � � 	 � � � � � � 	 � � � � � � � 	 � � 	 � � � � 	 � � � � � �

� � � 	 � � � � � � 	 � � � � � � � 	 � � 	 � � � � 	 � � � � � �

� 	 � 	 � 	 � 	

� 	 � 	 � 	 � 	

� 	 � 	 � 	 � 	

� 	 	 � 	 �

� 	 	 � 	 ��

� 	 	 � 	 ��

	

	

MATLAB’s fftfilt() function performs DFT convolution using the overlap-add method.

The Design of IIR Filters

An IIR filter is characterized by a recursive difference equation

N M

yn = akyn−k + bkfn−k

k=1 k=0

and a rational transfer function of the form

b0z0 + b1z
−1 + . . . + bM z

−M

H(z) =
z0 + a1z−1 + . . . + aN z−N

IIR filters have the advantage that they can give a better cut-off characteristic than a FIR
filter of the same order, but have the disadvantage that the phase response cannot be well
controlled.

18–4

� �

The most common design procedure for digital IIR filters is to design a continuous filter in
the s-plane, and then to transform that filter to the z-plane. Because the mapping between
the continuous and discrete domains cannot be done exactly, the various design methods are
at best approximations.

2.1 Design By Approximation of Derivatives:

Perhaps the simplest method for low-order systems is to use backward-difference approxi
mation to continuous domain derivatives.

Example 1

Suppose we wish to make a discrete-time filter based on a prototype first-order
high-pass filter

s
Hp(s) = .

s + a
The differential equation describing this filter is

dy df
+ ay =

dt dt

The backward-difference approximation to a derivative based on samples taken
at intervals T apart is

dx xn − xn−1≈
dt T

and substitution into the differential equation gives

yn − yn−1 fn − fn−1
+ ayn =

T T
or

1 1
yn = yn−1 + (fn − fn−1)

1 + aT 1 + aT
The transfer function is

1 − z−1 z − 1
H(z) = =

(1 + aT)1 + z−1 (1 + aT)z + 1

This example indicates that the method uses the transformation

1 − z−1

s →
T

in Hp(s). For higher order terms

1 − z−1 n
n s → .

T

18–5

� � � �

� � � �

�

	

�

� � � �

Example 2

Convert the continuous low-pass Butterworth filter with Ωc = 1 rad/s to a digital
filter with a sampling time T = 0.5 s. The transfer function is

1
Hp(s) = √ .

s2 + 2s + 1

The discrete-time transfer function is

1

H(z) = � −1 �2 √ � −1 �

1−z 1−z+ 2 + 1
T T

T 2

= √ √
(1 + 2T + T 2) − (2 + 2T)z−1 + z−2

and with T = 0.5 s,

0.25
H(z) =

1.9571 − 2.7071z−1 + z−2

The frequency response of this filter is plotted in Example 4.

In general, the backward-difference does not lead to satisfactory digital filters that mimic
the prototype filter characteristics. (See Proakis and Manolakis, Sec. 10.3.1).

2.2 Design by Impulse-Invariance:

In the impulse-invariant design method the impulse response {hn} of the digital filter is
taken to be proportional to the samples of the impulse response hp(t) of the continuous filter
Hp(s) with a sampling interval of T seconds. The most common form is

hn = Thp(nT).

� � � � �
	 	 	
�
	
�
	 �
� �
�
�
�
�
�
� �

� � 	 � �� � � � � � �

18–6

Then

(nT)} = T ZTH(z) = T Z {hp

�L−1 {Hp(s)}
�

since hp(t) = L−1 {Hp(s)}, and where ZT {} indicates the z-transform of a continuous func
tion with sampling interval T .

Example 3

Find the impulse-invariant IIR filter from the prototype continuous filter

a
Hp(s) = .

s + a

Solution: Using Laplace transform tables

hp(t) = L−1

�
a

�

= a e−at .
s + a

and from z-transform tables
a�

a e−at
�

= .ZT
1 − e−aT z−1

The IIR filter is �
a e−at

�
=

aT
H(z) = T ZT

1 − e−aT z−1

and the difference equation is

yn = e−aT yn−1 + aTfn

For the digital filter
∞

H(ej ΩT) = H(z)| j ΩT =
�

hk e
−j kΩT

z=e
k=0

and the DTFT of the samples of the continuous prototype’s impulse response is

∞
1

∞ � �
2πk

��
DTFT {hp(nT)} =

�
hp(kT) e−j kΩT =

�
Hp j .Ω −

T T
k=0
 k=−∞

Then if hn = Thp(nT),

∞ � �
2πk

��
H(ej ΩT) =

�
Hp j Ω − .

T
k=−∞

The discrete-time frequency response is therefore a superposition of shifted replicas of the
frequency response of the prototype. As a result, aliasing will be present in H(ej ω) if the
prototype’s frequency response |Hp(j Ω)| = 0 for� |Ω| ≥ π/T .

18–7

w
2 pp- p- 2 p 0

H (e)j w

a l i a s i n g d i s t o r t i o n
i n t h e p a s s - b a n d .

o v e r l a p p i n g r e p l i c a s

For this reason the impulse-invariance method is not suitable for the design of high-pass or
band-stop filters, which by definition require a prototype Hp(s) with a non-zero frequency
response at Ω = π/T.

Example 4

Design an impulse-invariant filter based on the second-order low-pass Butter-
worth prototype used in Example 2, with T = 0.5 s.

1
Hp(s) =

s2 +
√

2s + 1

Solution: From z-transform tables
� �

β
��

e−aT sin(βT)z ZT L−1

(s + a)2 + β2
=

z2 + 2z e−aT cos(βT)z + e−2aT

and Hp(s) may be written in this form

1
Hp(s) =

(s + 1/
√

2)2 + (1/
√

2)2

so that a = 1/
√

2, and β = 1/
√

2. Substituting these values,

0.1719z−1

H(z) = T ZT

�L−1 {Hp(s)}
�

=
1 − 1.3175z−1 + 0.4935z−2

The frequency response of the impulse-invariant, and backward-difference (from
Example 2) filters are compared with the prototype below:

18–8

0 1 2 3 4 5 60

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

F r e q u e n c y (r a d / s)

Fre
qu

en
cy
 re

sp
on

se
 m

ag
nit

ud
e

x - P r o t o t y p e B u t t e r w o r t h F i l t e r

I m p u l s e - i n v a r i a n t (T = 0 . 5)
B a c k w a r d d i f f e r e n c e (T = 0 . 5)

The MATLAB function
[bz, az] = impinvar(bs, as, Fs)

will compute the numerator az, and denominator bz coefficients for an impulse-invariant
filter from the continuous prototype coefficients bs and as, with a sampling frequency Fs.

The filter in Example 4 can be designed in a single line:

[bz, az] = impinvar(1, [1 sqrt(2) 1], 2).

18–9

